# NOT RUN {
#### Example 1: Linear Model ####
lm1=lm(Temp ~ Month + Day, data=airquality)
lm2=lm(Temp ~ Month + Day + Wind + Solar.R, data=airquality)
model_summary(lm1)
model_summary(lm2)
model_summary(list(lm1, lm2))
model_summary(list(lm1, lm2), std=TRUE, digits=2)
model_summary(list(lm1, lm2), file="OLS Models.doc")
unlink("OLS Models.doc") # delete file for test
#### Example 2: Generalized Linear Model ####
glm1=glm(case ~ age + parity,
data=infert, family=binomial)
glm2=glm(case ~ age + parity + education + spontaneous + induced,
data=infert, family=binomial)
model_summary(list(glm1, glm2)) # "std" is not applicable to glm
model_summary(list(glm1, glm2), file="GLM Models.doc")
unlink("GLM Models.doc") # delete file for test
#### Example 3: Linear Mixed Model ####
library(lmerTest)
hlm1=lmer(Reaction ~ (1 | Subject), data=sleepstudy)
hlm2=lmer(Reaction ~ Days + (1 | Subject), data=sleepstudy)
hlm3=lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy)
model_summary(list(hlm1, hlm2, hlm3))
model_summary(list(hlm1, hlm2, hlm3), std=TRUE)
model_summary(list(hlm1, hlm2, hlm3), file="HLM Models.doc")
unlink("HLM Models.doc") # delete file for test
#### Example 4: Generalized Linear Mixed Model ####
library(lmerTest)
data.glmm=MASS::bacteria
glmm1=glmer(y ~ trt + week + (1 | ID), data=data.glmm, family=binomial)
glmm2=glmer(y ~ trt + week + hilo + (1 | ID), data=data.glmm, family=binomial)
model_summary(list(glmm1, glmm2)) # "std" is not applicable to glmm
model_summary(list(glmm1, glmm2), file="GLMM Models.doc")
unlink("GLMM Models.doc") # delete file for test
#### Example 5: Multinomial Logistic Model ####
library(nnet)
d=airquality
d$Month=as.factor(d$Month) # Factor levels: 5, 6, 7, 8, 9
mn1=multinom(Month ~ Temp, data=d, Hess=TRUE)
mn2=multinom(Month ~ Temp + Wind + Ozone, data=d, Hess=TRUE)
model_summary(mn1)
model_summary(mn2)
model_summary(mn2, file="Multinomial Logistic Model.doc")
unlink("Multinomial Logistic Model.doc") # delete file for test
# }
Run the code above in your browser using DataLab