## Example 1 (bivariate correlation)
d = as.data.table(psych::bfi)
added(d, {
E = .mean("E", 1:5, rev=c(1,2), range=1:6)
O = .mean("O", 1:5, rev=c(2,5), range=1:6)
})
ggplot(data=d, aes(x=E, y=O)) +
geom_point(alpha=0.1) +
geom_smooth(method="loess") +
labs(x="ExtraversionBig 5",
y="OpennessBig 5") +
theme_bruce(markdown=TRUE)
## Example 2 (2x2 ANOVA)
d = data.frame(X1 = factor(rep(1:3, each=2)),
X2 = factor(rep(1:2, 3)),
Y.mean = c(5, 3, 2, 7, 3, 6),
Y.se = rep(c(0.1, 0.2, 0.1), each=2))
ggplot(data=d, aes(x=X1, y=Y.mean, fill=X2)) +
geom_bar(position="dodge", stat="identity", width=0.6, show.legend=FALSE) +
geom_errorbar(aes(x=X1, ymin=Y.mean-Y.se, ymax=Y.mean+Y.se),
width=0.1, color="black", position=position_dodge(0.6)) +
scale_y_continuous(expand=expansion(add=0),
limits=c(0,8), breaks=0:8) +
scale_fill_brewer(palette="Set1") +
labs(x="Independent Variable (*X*)", # italic X
y="Dependent Variable (*Y*)", # italic Y
title="Demo PlotbruceR") +
theme_bruce(markdown=TRUE, border="")
Run the code above in your browser using DataLab