# NOT RUN {
# Fit DCRW model for state filtering and regularization -
# using trivial adapt & samples values for speed
data(ellie1)
fit <- fit_ssm(ellie1, model = "DCRW", tstep = 4, adapt = 10, samples = 100,
thin = 1, span = 0.2)
# }
# NOT RUN {
# Fit DCRWS model for state filtering, regularization and behavioural state estimation -
# using trivial adapt & samples values for speed
fit.s <- fit_ssm(ellie1, model = "DCRWS", tstep = 2, adapt = 10, samples = 100,
thin = 1, span = 0.2)
diag_ssm(fit.s)
map_ssm(fit.s)
plot_fit(fit.s)
result.s <- get_summary(fit.s)
# fit hDCRWS model to > 1 tracks simultaneously
# this may provide better parameter and behavioural state estimation
# by borrowing strength across multiple track datasets -
# using trivial adapt & samples values for speed
data(ellie2)
hfit.s <- fit_ssm(ellie2, model = "hDCRWS", tstep = 2, adapt = 10, samples = 100,
thin = 1, span = 0.2)
diag_ssm(hfit.s)
map_ssm(hfit.s)
plot_fit(hfit.s)
result.hs <- get_summary(hfit.s)
# }
Run the code above in your browser using DataLab