# NOT RUN {
trend <- cumsum(rnorm(730, 0, .1))
dates <- seq.Date(from = as.Date("2014-01-01"), length = length(trend),
by = "day")
y <- zoo(trend + rnorm(length(trend), 0, .2), dates)
AddHolidayEffect <- function(y, dates, effect) {
## Adds a holiday effect to simulated data.
## Args:
## y: A zoo time series, with Dates for indices.
## dates: The dates of the holidays.
## effect: A vector of holiday effects of odd length. The central effect is
## the main holiday, with a symmetric influence window on either side.
## Returns:
## y, with the holiday effects added.
time <- dates - (length(effect) - 1) / 2
for (i in 1:length(effect)) {
y[time] <- y[time] + effect[i]
time <- time + 1
}
return(y)
}
## Define some holidays.
memorial.day <- NamedHoliday("MemorialDay")
memorial.day.effect <- c(.3, 3, .5)
memorial.day.dates <- as.Date(c("2014-05-26", "2015-05-25"))
y <- AddHolidayEffect(y, memorial.day.dates, memorial.day.effect)
presidents.day <- NamedHoliday("PresidentsDay")
presidents.day.effect <- c(.5, 2, .25)
presidents.day.dates <- as.Date(c("2014-02-17", "2015-02-16"))
y <- AddHolidayEffect(y, presidents.day.dates, presidents.day.effect)
labor.day <- NamedHoliday("LaborDay")
labor.day.effect <- c(1, 2, 1)
labor.day.dates <- as.Date(c("2014-09-01", "2015-09-07"))
y <- AddHolidayEffect(y, labor.day.dates, labor.day.effect)
## The holidays can be in any order.
holiday.list <- list(memorial.day, labor.day, presidents.day)
number.of.holidays <- length(holiday.list)
## In a real example you'd want more than 100 MCMC iterations.
niter <- 100
ss <- AddLocalLevel(list(), y)
ss <- AddRandomWalkHoliday(ss, y, memorial.day)
ss <- AddRandomWalkHoliday(ss, y, labor.day)
ss <- AddRandomWalkHoliday(ss, y, presidents.day)
model <- bsts(y, state.specification = ss, niter = niter, seed = 8675309)
## Plot model components.
plot(model, "comp")
## Plot the effect of the specific state component.
plot(ss[[2]], model)
# }
Run the code above in your browser using DataLab