impulse.variable
and response.variable
below).
impulse.responses(fit, impulse.variable = 1, response.variable = 2, t = NULL, nhor = 20, scenario = 2, draw.plot = TRUE)
save.parameters
set to TRUE
.1
, there is no orthogonalizaton, and the shock size corresponds to one unit of the impulse variable. If scenario
is either 2
(the default) or 3
,
the error term variance-covariance matrix is orthogonalized via Cholesky decomposition. For scenario = 2
, the Cholesky decomposition of the error term VCV matrix at time point t
is used.
scenario = 3
is the variant used in Del Negro and Primiceri (2015). Here, the diagonal elements are set to their averages over time, whereas the off-diagonal elements are specific to time t
. See the
notes below for further information.TRUE
(the default): Produces a plot showing the 5, 25, 50, 75 and 95 percent quantiles of the simulated impulse responses.nhor
in last column).Del Negro, M. and Primicerio, G.E. (2015). `Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum', Review of Economic Studies 82, 1342-1345. Supplementary material available at http://restud.oxfordjournals.org/content/82/4/1342/suppl/DC1 (accessed: 2015-11-17).
## Not run:
#
# data(usmacro)
# set.seed(5813)
# # Run BVAR; save parameters
# fit <- bvar.sv.tvp(usmacro, save.parameters = TRUE)
# # Impulse responses
# impulse.responses(fit)
#
# ## End(Not run)
Run the code above in your browser using DataLab