Learn R Programming

cTMed (version 1.0.6)

BootMed: Bootstrap Sampling Distribution of Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function generates a bootstrap method sampling distribution of the total, direct and indirect effects of the independent variable \(X\) on the dependent variable \(Y\) through mediator variables \(\mathbf{m}\) over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model drift matrix \(\boldsymbol{\Phi}\).

Usage

BootMed(phi, phi_hat, delta_t, from, to, med, ncores = NULL, tol = 0.01)

Value

Returns an object of class ctmedboot which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("BootMed").

output

A list with length of length(delta_t).

Each element in the output list has the following elements:

est

A vector of total, direct, and indirect effects.

thetahatstar

A matrix of bootstrap total, direct, and indirect effects.

Arguments

phi

List of numeric matrices. Each element of the list is a bootstrap estimate of the drift matrix (\(\boldsymbol{\Phi}\)).

phi_hat

Numeric matrix. The estimated drift matrix (\(\hat{\boldsymbol{\Phi}}\)) from the original data set. phi_hat should have row and column names pertaining to the variables in the system.

delta_t

Numeric. Time interval (\(\Delta t\)).

from

Character string. Name of the independent variable \(X\) in phi.

to

Character string. Name of the dependent variable \(Y\) in phi.

med

Character vector. Name/s of the mediator variable/s in phi.

ncores

Positive integer. Number of cores to use. If ncores = NULL, use a single core. Consider using multiple cores when number of replications R is a large value.

tol

Numeric. Smallest possible time interval to allow.

Author

Ivan Jacob Agaloos Pesigan

Details

See Total(), Direct(), and Indirect() for more details.

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. tools:::Rd_expr_doi("10.2307/271028")

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. tools:::Rd_expr_doi("10.1080/10705511.2014.973960")

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. tools:::Rd_expr_doi("10.1007/s11336-021-09767-0")

See Also

Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootIndirectCentral(), BootMedStd(), BootTotalCentral(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), MedStd(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()

Examples

Run this code
# \donttest{
library(bootStateSpace)
# prepare parameters
## number of individuals
n <- 50
## time points
time <- 100
delta_t <- 0.10
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- matrix(
  data = c(
    1.0,
    0.2,
    0.2,
    0.2,
    1.0,
    0.2,
    0.2,
    0.2,
    1.0
  ),
  nrow = p
)
sigma0_l <- t(chol(sigma0))
mu <- rep(x = 0, times = p)
phi <- matrix(
  data = c(
    -0.357,
    0.771,
    -0.450,
    0.0,
    -0.511,
    0.729,
    0,
    0,
    -0.693
  ),
  nrow = p
)
sigma <- matrix(
  data = c(
    0.24455556,
    0.02201587,
    -0.05004762,
    0.02201587,
    0.07067800,
    0.01539456,
    -0.05004762,
    0.01539456,
    0.07553061
  ),
  nrow = p
)
sigma_l <- t(chol(sigma))
## measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.2 * diag(k)
theta_l <- t(chol(theta))

boot <- PBSSMOUFixed(
  R = 10L, # use at least 1000 in actual research
  path = getwd(),
  prefix = "ou",
  n = n,
  time = time,
  delta_t = delta_t,
  mu0 = mu0,
  sigma0_l = sigma0_l,
  mu = mu,
  phi = phi,
  sigma_l = sigma_l,
  nu = nu,
  lambda = lambda,
  theta_l = theta_l,
  ncores = NULL, # consider using multiple cores
  seed = 42
)
phi_hat <- phi
colnames(phi_hat) <- rownames(phi_hat) <- c("x", "m", "y")
phi <- extract(object = boot, what = "phi")

# Specific time interval ----------------------------------------------------
BootMed(
  phi = phi,
  phi_hat = phi_hat,
  delta_t = 1,
  from = "x",
  to = "y",
  med = "m"
)

# Range of time intervals ---------------------------------------------------
boot <- BootMed(
  phi = phi,
  phi_hat = phi_hat,
  delta_t = 1:5,
  from = "x",
  to = "y",
  med = "m"
)
plot(boot)
plot(boot, type = "bc") # bias-corrected

# Methods -------------------------------------------------------------------
# BootMed has a number of methods including
# print, summary, confint, and plot
print(boot)
summary(boot)
confint(boot, level = 0.95)
print(boot, type = "bc") # bias-corrected
summary(boot, type = "bc")
confint(boot, level = 0.95, type = "bc")
# }

Run the code above in your browser using DataLab