Learn R Programming

cTMed (version 1.0.6)

MedStd: Standardized Total, Direct, and Indirect Effects of X on Y Through M Over a Specific Time Interval or a Range of Time Intervals

Description

This function computes the standardized total, direct, and indirect effects of the independent variable \(X\) on the dependent variable \(Y\) through mediator variables \(\mathbf{m}\) over a specific time interval \(\Delta t\) or a range of time intervals using the first-order stochastic differential equation model's drift matrix \(\boldsymbol{\Phi}\) and process noise covariance matrix \(\boldsymbol{\Sigma}\).

Usage

MedStd(phi, sigma, delta_t, from, to, med, tol = 0.01)

Value

Returns an object of class ctmedmed which is a list with the following elements:

call

Function call.

args

Function arguments.

fun

Function used ("MedStd").

output

A standardized matrix of total, direct, and indirect effects.

Arguments

phi

Numeric matrix. The drift matrix (\(\boldsymbol{\Phi}\)). phi should have row and column names pertaining to the variables in the system.

sigma

Numeric matrix. The process noise covariance matrix (\(\boldsymbol{\Sigma}\)).

delta_t

Numeric. Time interval (\(\Delta t\)).

from

Character string. Name of the independent variable \(X\) in phi.

to

Character string. Name of the dependent variable \(Y\) in phi.

med

Character vector. Name/s of the mediator variable/s in phi.

tol

Numeric. Smallest possible time interval to allow.

Author

Ivan Jacob Agaloos Pesigan

Details

See TotalStd(), DirectStd(), and IndirectStd() for more details.

References

Bollen, K. A. (1987). Total, direct, and indirect effects in structural equation models. Sociological Methodology, 17, 37. tools:::Rd_expr_doi("10.2307/271028")

Deboeck, P. R., & Preacher, K. J. (2015). No need to be discrete: A method for continuous time mediation analysis. Structural Equation Modeling: A Multidisciplinary Journal, 23 (1), 61–75. tools:::Rd_expr_doi("10.1080/10705511.2014.973960")

Ryan, O., & Hamaker, E. L. (2021). Time to intervene: A continuous-time approach to network analysis and centrality. Psychometrika, 87 (1), 214–252. tools:::Rd_expr_doi("10.1007/s11336-021-09767-0")

See Also

Other Continuous Time Mediation Functions: BootBeta(), BootBetaStd(), BootIndirectCentral(), BootMed(), BootMedStd(), BootTotalCentral(), DeltaBeta(), DeltaBetaStd(), DeltaIndirectCentral(), DeltaMed(), DeltaMedStd(), DeltaTotalCentral(), Direct(), DirectStd(), Indirect(), IndirectCentral(), IndirectStd(), MCBeta(), MCBetaStd(), MCIndirectCentral(), MCMed(), MCMedStd(), MCPhi(), MCPhiSigma(), MCTotalCentral(), Med(), PosteriorBeta(), PosteriorIndirectCentral(), PosteriorMed(), PosteriorTotalCentral(), Total(), TotalCentral(), TotalStd(), Trajectory()

Examples

Run this code
phi <- matrix(
  data = c(
    -0.357, 0.771, -0.450,
    0.0, -0.511, 0.729,
    0, 0, -0.693
  ),
  nrow = 3
)
colnames(phi) <- rownames(phi) <- c("x", "m", "y")
sigma <- matrix(
  data = c(
    0.24455556, 0.02201587, -0.05004762,
    0.02201587, 0.07067800, 0.01539456,
    -0.05004762, 0.01539456, 0.07553061
  ),
  nrow = 3
)

# Specific time interval ----------------------------------------------------
MedStd(
  phi = phi,
  sigma = sigma,
  delta_t = 1,
  from = "x",
  to = "y",
  med = "m"
)

# Range of time intervals ---------------------------------------------------
med <- MedStd(
  phi = phi,
  sigma = sigma,
  delta_t = 1:30,
  from = "x",
  to = "y",
  med = "m"
)
plot(med)

# Methods -------------------------------------------------------------------
# MedStd has a number of methods including
# print, summary, and plot
med <- MedStd(
  phi = phi,
  sigma = sigma,
  delta_t = 1:5,
  from = "x",
  to = "y",
  med = "m"
)
print(med)
summary(med)
plot(med)

Run the code above in your browser using DataLab