# NOT RUN {
data("wg93")
mjca(wg93[,1:4])
# table input
data(UCBAdmissions)
mjca(UCBAdmissions)
# }
# NOT RUN {
plot(mjca(UCBAdmissions))
# }
# NOT RUN {
### Different approaches to multiple correspondence analysis:
# Multiple correspondence analysis based on the indicator matrix:
# }
# NOT RUN {
mjca(wg93[,1:4], lambda = "indicator")
# }
# NOT RUN {
# Multiple correspondence analysis based on the Burt matrix:
# }
# NOT RUN {
mjca(wg93[,1:4], lambda = "Burt")
# }
# NOT RUN {
# "Adjusted" multiple correspondence analysis (default setting):
# }
# NOT RUN {
mjca(wg93[,1:4], lambda = "adjusted")
# }
# NOT RUN {
# Joint correspondence analysis:
# }
# NOT RUN {
mjca(wg93[,1:4], lambda = "JCA")
# }
# NOT RUN {
### Subset analysis and supplementary variables:
# Subset analysis:
# }
# NOT RUN {
mjca(wg93[,1:4], subsetcat = (1:20)[-seq(3,18,5)])
# }
# NOT RUN {
# Supplementary variables:
# }
# NOT RUN {
mjca(wg93, supcol = 5:7)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab