# NOT RUN {
# laplacian of a scalar field
f <- 'x^2+y^2+z^2'
laplacian(f, var = c('x','y','z'))
f %laplacian% c('x','y','z')
# laplacian of scalar fields
f <- c('x^2','y^3','z^4')
laplacian(f, var = c('x','y','z'))
f %laplacian% c('x','y','z')
# numerical laplacian of scalar fields
f <- c(function(x,y,z) x^2, function(x,y,z) y^3, function(x,y,z) z^4)
laplacian(f, var = c('x'=1,'y'=1,'z'=1))
f %laplacian% c('x'=1,'y'=1,'z'=1)
# laplacian of array of scalar fields
f1 <- c('x^2','y^3','z^4')
f2 <- c('x','y','z')
a <- matrix(c(f1,f2), nrow = 2, byrow = TRUE)
laplacian(a, var = c('x','y','z'))
a %laplacian% c('x','y','z')
# laplacian in polar coordinates
f <- c('sqrt(r)/10','sqrt(r)')
laplacian(f, var = c('r','phi'), coordinates = 'polar')
# }
Run the code above in your browser using DataLab