Learn R Programming

camel (version 0.2.0)

camel-internal: Internal camel functions

Description

Internal camel functions

Usage

tiger.likelihood(Sigma, Omega) tiger.tracel2(Sigma, Omega) camel.tiger.cv(obj, loss=c("likelihood", "tracel2"), fold=5) part.cv(n, fold) camel.tiger.clime.mfista(Sigma, d, maxdf, mu, lambda, shrink, prec, max.ite) camel.tiger.slasso.mfista(data, n, d, maxdf, mu, lambda, shrink, prec, max.ite) camel.slim.lad.mfista(Y, X, lambda, nlambda, n, d, maxdf, mu, max.ite, prec, intercept, verbose) camel.slim.sqrt.mfista(Y, X, lambda, nlambda, n, d, maxdf, mu, max.ite, prec, intercept, verbose) camel.slim.dantzig.mfista(Y, X, lambda, nlambda, n, d, maxdf, mu, max.ite, prec, intercept, verbose) camel.cmr.mfista(Y, X, lambda, nlambda, n, d, m, mu, max.ite, prec)

Arguments

Sigma
Covariance matrix.
Omega
Inverse covariance matrix.
obj
An object with S3 class returned from "tiger".
loss
Type of loss function for cross validation.
fold
The number of fold for cross validatio.
n
The number of observations (sample size).
d
Dimension of data.
m
Columns of parameters in multivariate regression.
maxdf
Maximal degree of freedom.
lambda
Grid of non-negative values for the regularization parameter lambda.
nlambda
The number of the regularization parameter lambda.
shrink
Shrinkage of regularization parameter based on precision of estimation.
mu
The smooth surrogate parameter.
prec
Stopping criterion.
max.ite
Maximal value of iterations.
data
n by d data matrix.
Y
Dependent variables in linear regression.
X
Design matrix in linear regression.
intercept
Whether the intercept is included in the model.
verbose
Tracing information printing is disabled if verbose = FALSE.

Details

These are not intended for use by users.

See Also

camel.tiger, camel.slim, camel.cmr and camel-package.