Usage
durbin.watson(model, ...)
durbin.watson.lm(model, max.lag=1, simulate=TRUE, reps=1000,
method=c("resample","normal"),
alternative=c("two.sided", "positive", "negative"), ...)
durbin.watson.default(model, max.lag=1, ...)
## S3 method for class 'durbin.watson':
print(x, ...)
Arguments
model
a linear-model object, or a vector of residuals from a linear model.
max.lag
maximum lag to which to compute residual autocorrelations
and Durbin-Watson statistics.
simulate
if TRUE
p-values will be estimated by bootstrapping.
reps
number of bootstrap replications.
method
bootstrap method: "resample"
to resample from the observed
residuals; "normal"
to sample normally distributed errors with 0 mean
and standard deviation equal to the standard error of the regression.
alternative
sign of autocorrelation in alternative hypothesis; specify
only if max.lag = 1
; if max.lag > 1
, then alternative
is
taken to be "two.sided"
.
...
arguments to be passed down to method functions.