ellipse(center, shape, radius, center.pch=19, center.cex=1.5,
segments=51, add=TRUE, xlab="", ylab="",
las=par('las'), col=palette()[2], lwd=2, lty=1, ...)
data.ellipse(x, y, levels=c(0.5, 0.9), center.pch=19, center.cex=1.5,
plot.points=TRUE, add=!plot.points, segments=51, robust=FALSE,
xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)),
las=par('las'), col=palette()[2], pch=1, lwd=2, lty=1, ...)
confidence.ellipse(model, ...)
## S3 method for class 'lm':
confidence.ellipse(model, which.coef, levels=0.95, Scheffe=FALSE,
center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
las=par('las'), col=palette()[2], lwd=2, lty=1, ...)
## S3 method for class 'glm':
confidence.ellipse(model, which.coef, levels=0.95, Scheffe=FALSE,
center.pch=19, center.cex=1.5, segments=51, xlab, ylab,
las=par('las'), col=palette()[2], lwd=2, lty=1, ...)
TRUE
add ellipse to current plot.y
is missing) a 2-column numeric matrix.x
.FALSE
data ellipses are added to the current scatterplot,
but points are not plotted.TRUE
use the cov.trob
function in the MASS
package
to calculate the center and covariance matrix for the data ellipse.lm
or glm
.TRUE
scale the ellipse so that its projections onto the
axes give Scheffe confidence intervals for the coefficients.0
, ticks labels are drawn parallel to the
axis; set to 1
for horizontal labels (see par
).1
(a circle, see par
).2
(see par
).1
, a solid line (see par
).plot
and
line
.NULL
. These functions are used for their side effect: producing
plots.data.ellipse
superimposes the normal-probability contours over a scatterplot
of the data.cov.trob
.data.ellipse(Prestige$income, Prestige$education, levels=0.1*1:9, lty=2)
confidence.ellipse(lm(prestige~income+education, data=Prestige), Scheffe=TRUE)
Run the code above in your browser using DataLab