qqPlot(x, ...)
qqp(...)
## S3 method for class 'default':
qqPlot(x, distribution="norm", ...,
ylab=deparse(substitute(x)), xlab=paste(distribution, "quantiles"),
main=NULL, las=par("las"),
envelope=.95,
col=palette()[1], col.lines=palette()[2], lwd=2, pch=1, cex=par("cex"),
line=c("quartiles", "robust", "none"),
labels = if(!is.null(names(x))) names(x) else seq(along=x),
id.method = "y",
id.n =if(id.method[1]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], grid=TRUE)
## S3 method for class 'lm':
qqPlot(x, xlab=paste(distribution, "Quantiles"),
ylab=paste("Studentized Residuals(", deparse(substitute(x)), ")",
sep=""), main=NULL,
distribution=c("t", "norm"), line=c("robust", "quartiles", "none"),
las=par("las"), simulate=TRUE, envelope=.95,
reps=100, col=palette()[1], col.lines=palette()[2], lwd=2,
pch=1, cex=par("cex"),
labels, id.method = "y",
id.n = if(id.method[1]=="identify") Inf else 0,
id.cex=1, id.col=palette()[1], grid=TRUE, ...)
lm
object."norm"
for the
normal distribution; t
for the t-distribution.FALSE
for no envelope.0
, ticks labels are drawn parallel to the
axis; set to 1
for horizontal labels (see par
).1
(a circle, see par
).1
.names(x)
or observation numbers if names(x)
is NULL
.id.method="y"
will identify the id.n
points with the largest value of
abs(y-mean(y))
. See showLabels
for otheid.n=0
, the default, no
point identification.cex
(which is typically 1
).2
(see par
)."quartiles"
to pass a line through the quartile-pairs, or
"robust"
for a robust-regression line; the latter uses the rlm
function in the MASS
package. Specifying line = "none"
suppTRUE
calculate confidence envelope by parametric bootstrap;
for lm
object only. The method is due to Atkinson (1985).df
to be passed to the appropriate quantile function.q
and d
, respectively) may be used.
When plotting a vector, the confidence envelope is based on the SEs of the order statistics
of an independent random sample from the comparison distribution (see Fox, 2008).
Studentized residuals from linear models are plotted against the appropriate t-distribution with a point-wise
confidence envelope computed by default by a parametric bootstrap,
as described by Atkinson (1985).
The function qqp
is an abbreviation for qqPlot
.qqplot
, qqnorm
,
qqline
, showLabels
x<-rchisq(100, df=2)
qqPlot(x)
qqPlot(x, dist="chisq", df=2)
qqPlot(lm(prestige ~ income + education + type, data=Duncan),
envelope=.99)
Run the code above in your browser using DataLab