sp is an abbreviation for scatterplot.scatterplot(x, ...)
## S3 method for class 'formula':
scatterplot(formula, data, subset, xlab, ylab, legend.title, legend.coords,
	labels, ...)
## S3 method for class 'default':
scatterplot(x, y, 
    smoother=loessLine, smoother.args=list(), smooth, span,
    spread=!by.groups, reg.line=lm,
    boxplots=if (by.groups) "" else "xy",
    xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), las=par("las"),
    lwd=1, lty=1,
    labels, id.method = "mahal", 
    id.n = if(id.method[1]=="identify") length(x) else 0, 
    id.cex = 1, id.col = palette()[1],
    log="", jitter=list(), xlim=NULL, ylim=NULL,
    cex=par("cex"), cex.axis=par("cex.axis"), cex.lab=par("cex.lab"), 
    cex.main=par("cex.main"), cex.sub=par("cex.sub"), 
    groups, by.groups=!missing(groups), 
    legend.title=deparse(substitute(groups)), legend.coords,
    ellipse=FALSE, levels=c(.5, .95), robust=TRUE,
    col=if (n.groups == 1) palette()[3:1] else rep(palette(), length=n.groups),
    pch=1:n.groups, 
    legend.plot=!missing(groups), reset.par=TRUE, grid=TRUE, ...)
sp(...)y ~ x or 
    (to plot by groups) y ~ x | z, where z evaluates to a factor 
    or other variable dividing the data into groups. If x is a factor, then parallel boxplotScatterplotSmoothers).smooth=TRUE then smoother is set to loessLine,
    and if span is specified, it is added to smoother.args.loessLine and
    for gamLine, this is done by separately smoothing the squares of the postive and negative
    residuals from the mean fit, and then adding theFALSE not to plot a regression line."x" a boxplot for x is drawn below the plot;
    if "y" a boxplot for y is drawn to the left of the plot;
    if "xy" both boxplots are drawn; set to "" or FALSE0, ticks labels are drawn parallel to the
    axis; set to 1 for horizontal labels (see par).1).1, solid line).id.n=0 for labeling no points.  See
    showLabels for details of these arguments.  If the plot uses
    different colors for grlog argument to plot, to produce log axes.x or y or both, specifying jitter factors
    for the horizontal and vertical coordinates of the points in the scatterplot. The 
    jitter function is usNULL, determined from the data.NULL, determined from the data.TRUE, regression lines are fit by groups."topleft",
  	recognized by leTRUE data-concentration ellipses are plotted.c(.5, .95).TRUE (the default) use the cov.trob function in the MASS package
    to calculate the center and covariance matrix for the data ellipses.palette()[3] for linear regression lines, palette()[2] for nonparametric regression lines, and palette()[1] 
  	for points if therepar).par).TRUE then a legend for the groups is plotted in the upper margin.TRUE then plotting parameters are reset to their previous values
    when scatterplot exits; if FALSE then the mar and mfcol parameters are
    altered for the current plotting device. plot.NULL is returned invisibly.boxplot,
  jitter, legend,
  scatterplotMatrix, dataEllipse, Boxplot,
  cov.trob,
  showLabels, ScatterplotSmoothers.scatterplot(prestige ~ income, data=Prestige, ellipse=TRUE)
if (interactive()){
scatterplot(prestige ~ income, data=Prestige, smoother=quantregLine)
}
scatterplot(prestige ~ income|type, data=Prestige, smoother=loessLine, 
    smoother.args=list(span=1))
scatterplot(prestige ~ income|type, data=Prestige, legend.coords="topleft")
scatterplot(vocabulary ~ education, jitter=list(x=1, y=1), 
	data=Vocab, id.n=0, smoother=FALSE)
scatterplot(infant.mortality ~ gdp, log="xy", data=UN, id.n=5)
scatterplot(income ~ type, data=Prestige)
	scatterplot(infant.mortality ~ gdp, id.method="identify", data=UN)
scatterplot(infant.mortality ~ gdp, id.method="identify", smoother=loessLine, data=UN)Run the code above in your browser using DataLab