Usage
spreadLevelPlot(x, ...)
slp(...)
## S3 method for class 'formula':
spreadLevelPlot(x, data=NULL, subset, na.action,
main=paste("Spread-Level Plot for", varnames[response],
"by", varnames[-response]), ...)
## S3 method for class 'default':
spreadLevelPlot(x, by, robust.line=TRUE,
start=0, xlab="Median", ylab="Hinge-Spread", point.labels=TRUE, las=par("las"),
main=paste("Spread-Level Plot for", deparse(substitute(x)),
"by", deparse(substitute(by))), col=palette()[1], col.lines=palette()[2],
pch=1, lwd=2, grid=TRUE, ...)
## S3 method for class 'lm':
spreadLevelPlot(x, robust.line=TRUE,
xlab="Fitted Values",
ylab="Absolute Studentized Residuals", las=par("las"),
main=paste("Spread-Level Plot for", deparse(substitute(x))),
pch=1, col=palette()[1], col.lines=palette()[2], lwd=2, grid=TRUE, ...)
## S3 method for class 'spreadLevelPlot':
print(x, ...)
- x
{a formula of the form y ~ x
, where y
is a numeric vector
and x
is a factor, or an lm
object to be plotted; alternatively a numeric vector.}
- data
{an optional data frame containing the variables to be plotted.
By default the variables are taken from the environment from which
spreadLevelPlot
is called.}
- subset
{an optional vector specifying a subset of observations to be used.}
- na.action
{a function that indicates what should happen when the data contain NA
s.
The default is set by the na.action
setting of options
.}
- by
{a factor, numeric vector, or character vector defining groups.}
- robust.line
{if TRUE
a robust line is fit using the rlm
function in
the MASS
package; if FALSE
a line is fit using lm
.}
- start
{add the constant start
to each data value.}
- main
{title for the plot.}
- xlab
{label for horizontal axis.}
- ylab
{label for vertical axis.}
- point.labels
{if TRUE
label the points in the plot with group names.}
- las
{if 0
, ticks labels are drawn parallel to the
axis; set to 1
for horizontal labels (see par
).}
- col
{color for points; the default is the first entry
in the current color palette (see palette
and par
).}
- col.lines
{color for lines; default is the second entry in the current
palette}
- pch
{plotting character for points; default is 1
(a circle, see par
).}
- lwd
{line width; default is 2
(see par
).}
- grid
{If TRUE, the default, a light-gray background grid is put on the
graph}
- ...
{arguments passed to plotting functions.}
Except for linear models, computes the statistics for, and plots, a Tukey spread-level plot
of log(hinge-spread) vs. log(median) for the groups; fits a line to the plot; and calculates a
spread-stabilizing transformation from the slope of the line.
For linear models, plots log(abs(studentized residuals) vs. log(fitted values).
The function slp
is an abbreviation for spreadLevelPlot
.
An object of class spreadLevelPlot
containing:
- Statistics
{a matrix with the lower-hinge, median, upper-hinge, and hinge-spread
for each group. (Not for an lm
object.)}
- PowerTransformation
{spread-stabilizing power transformation, calculated as $1 - slope$
of the line fit to the plot.}
Fox, J. (2008)
Applied Regression Analysis and Generalized Linear Models,
Second Edition. Sage.
Fox, J. and Weisberg, S. (2011)
An R Companion to Applied Regression, Second Edition, Sage.
Hoaglin, D. C., Mosteller, F. and Tukey, J. W. (Eds.) (1983)
Understanding Robust and Exploratory Data Analysis. Wiley.
[object Object]
hccm
, ncvTest
spreadLevelPlot(interlocks + 1 ~ nation, data=Ornstein)
slp(lm(interlocks + 1 ~ assets + sector + nation, data=Ornstein))
hplot
regression