Learn R Programming

car (version 3.0-2)

durbinWatsonTest: Durbin-Watson Test for Autocorrelated Errors

Description

Computes residual autocorrelations and generalized Durbin-Watson statistics and their bootstrapped p-values. dwt is an abbreviation for durbinWatsonTest.

Usage

durbinWatsonTest(model, ...)

dwt(...)

# S3 method for lm durbinWatsonTest(model, max.lag=1, simulate=TRUE, reps=1000, method=c("resample","normal"), alternative=c("two.sided", "positive", "negative"), ...)

# S3 method for default durbinWatsonTest(model, max.lag=1, ...)

# S3 method for durbinWatsonTest print(x, ...)

Arguments

model

a linear-model object, or a vector of residuals from a linear model.

max.lag

maximum lag to which to compute residual autocorrelations and Durbin-Watson statistics.

simulate

if TRUE p-values will be estimated by bootstrapping.

reps

number of bootstrap replications.

method

bootstrap method: "resample" to resample from the observed residuals; "normal" to sample normally distributed errors with 0 mean and standard deviation equal to the standard error of the regression.

alternative

sign of autocorrelation in alternative hypothesis; specify only if max.lag = 1; if max.lag > 1, then alternative is taken to be "two.sided".

arguments to be passed down.

x

durbinWatsonTest object.

Value

Returns an object of type "durbinWatsonTest".

References

Fox, J. (2016) Applied Regression Analysis and Generalized Linear Models, Third Edition. Sage.

Examples

Run this code
# NOT RUN {
durbinWatsonTest(lm(fconvict ~ tfr + partic + degrees + mconvict, data=Hartnagel))
# }

Run the code above in your browser using DataLab