Computes residual autocorrelations and generalized Durbin-Watson
statistics and their bootstrapped p-values. dwt
is an
abbreviation for durbinWatsonTest
.
durbinWatsonTest(model, ...)dwt(...)
# S3 method for lm
durbinWatsonTest(model, max.lag=1, simulate=TRUE, reps=1000,
method=c("resample","normal"),
alternative=c("two.sided", "positive", "negative"), ...)
# S3 method for default
durbinWatsonTest(model, max.lag=1, ...)
# S3 method for durbinWatsonTest
print(x, ...)
Returns an object of type "durbinWatsonTest"
.
a linear-model object, or a vector of residuals from a linear model.
maximum lag to which to compute residual autocorrelations and Durbin-Watson statistics.
if TRUE
p-values will be estimated by bootstrapping.
number of bootstrap replications.
bootstrap method: "resample"
to resample from the observed
residuals; "normal"
to sample normally distributed errors with 0 mean
and standard deviation equal to the standard error of the regression.
sign of autocorrelation in alternative hypothesis; specify
only if max.lag = 1
; if max.lag > 1
, then alternative
is
taken to be "two.sided"
.
arguments to be passed down.
durbinWatsonTest
object.
John Fox jfox@mcmaster.ca
Fox, J. (2016) Applied Regression Analysis and Generalized Linear Models, Third Edition. Sage.
durbinWatsonTest(lm(fconvict ~ tfr + partic + degrees + mconvict, data=Hartnagel))
Run the code above in your browser using DataLab