# a simple use
## Real Data
## creat a dataframe
df <- data.frame("gender" = sample(c("female", "male"), 100, TRUE, c(1 / 3, 2 / 3)),
"age" = sample(c("0-30", "30-50", ">50"), 100, TRUE),
"jobs" = sample(c("stu.", "teac.", "others"), 100, TRUE),
stringsAsFactors = TRUE)
Res <- StrPBR(data = df, bsize = 4)
## view the output
Res
# \donttest{
## view all patients' profile and assignments
Res$Cov_Assig# }
## Simulated data
cov_num <- 3
level_num <- c(2, 3, 3)
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, 0.4, 0.3, 0.3)
Res.sim <- StrPBR.sim(n = 100, cov_num, level_num, pr)
## view the output
Res.sim
# \donttest{
## view the detials of difference
Res.sim$Diff# }
# \donttest{
N <- 5
n <- 1000
cov_num <- 3
level_num <- c(2, 3, 5)
# Set pr to follow two tips:
#(1) length of pr should be sum(level_num);
#(2)sum of probabilities for each margin should be 1.
pr <- c(0.4, 0.6, 0.3, 0.4, 0.3, rep(0.2, times = 5))
omega <- c(0.2, 0.2, rep(0.6 / cov_num, times = cov_num))
# Set block size for stratified randomization
bsize <- 4
## generate a container to contain Diff
DS <- matrix(NA, ncol = N, nrow = 1 + prod(level_num) + sum(level_num))
for(i in 1 : N){
rtS <- StrPBR.sim(n, cov_num, level_num, pr, bsize)
DS[ , i] <- rtS$Diff
}
## do some analysis
require(dplyr)
## analyze the overall imbalance
Ana_O <- matrix(NA, nrow = 1, ncol = 3)
rownames(Ana_O) <- c("Str.R")
colnames(Ana_O) <- c("mean", "median", "95%quantile")
tempS <- DS[1, ] %>% abs
Ana_O[1, ] <- c((tempS %>% mean), (tempS %>% median),
(tempS %>% quantile(0.95)))
## analyze the within-stratum imbalances
tempWS <- DS[2 : 1 + prod(level_num), ] %>% abs
Ana_W <- matrix(NA, nrow = 1, ncol = 3)
rownames(Ana_W) <- c("Str.R")
colnames(Ana_W) <- c("mean", "median", "95%quantile")
Ana_W[1, ] = c((tempWS %>% apply(1, mean) %>% mean),
(tempWS %>% apply(1, median) %>% mean),
(tempWS %>% apply(1, mean) %>% quantile(0.95)))
## analyze the marginal imbalance
tempMS <- DS[(1 + prod(level_num) + 1) : (1 + prod(level_num) + sum(level_num)), ] %>% abs
Ana_M <- matrix(NA, nrow = 1, ncol = 3)
rownames(Ana_M) <- c("Str.R");
colnames(Ana_M) <- c("mean", "median", "95%quantile")
Ana_M[1, ] = c((tempMS %>% apply(1, mean) %>% mean),
(tempMS %>% apply(1, median) %>% mean),
(tempMS %>% apply(1, mean) %>% quantile(0.95)))
AnaHP <- list(Ana_O, Ana_M, Ana_W)
names(AnaHP) <- c("Overall", "Marginal", "Within-stratum")
AnaHP
# }
Run the code above in your browser using DataLab