predictors(x, ...)## S3 method for class 'train':
predictors(x, ...)
## S3 method for class 'terms':
predictors(x, ...)
## S3 method for class 'formula':
predictors(x, ...)
## S3 method for class 'list':
predictors(x, ...)
## S3 method for class 'mvr':
predictors(x, ...)
## S3 method for class 'gbm':
predictors(x, ...)
## S3 method for class 'Weka_classifier':
predictors(x, ...)
## S3 method for class 'fda':
predictors(x, ...)
## S3 method for class 'earth':
predictors(x, ...)
## S3 method for class 'gausspr':
predictors(x, ...)
## S3 method for class 'ksvm':
predictors(x, ...)
## S3 method for class 'lssvm':
predictors(x, ...)
## S3 method for class 'rvm':
predictors(x, ...)
## S3 method for class 'train':
predictors(x, ...)
## S3 method for class 'gpls':
predictors(x, ...)
## S3 method for class 'knn3':
predictors(x, ...)
## S3 method for class 'LogitBoost':
predictors(x, ...)
## S3 method for class 'lda':
predictors(x, ...)
## S3 method for class 'rda':
predictors(x, ...)
## S3 method for class 'multinom':
predictors(x, ...)
## S3 method for class 'nnet':
predictors(x, ...)
## S3 method for class 'pcaNNet':
predictors(x, ...)
## S3 method for class 'NaiveBayes':
predictors(x, ...)
## S3 method for class 'randomForest':
predictors(x, ...)
## S3 method for class 'pamrtrained':
predictors(x, newdata = NULL, threshold = NULL, ...)
## S3 method for class 'superpc':
predictors(x, newdata = NULL, threshold = NULL, n.components = NULL, ...)
## S3 method for class 'slda':
predictors(x, ...)
## S3 method for class 'rpart':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'regbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'classbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'glmboost':
predictors(x, ...)
## S3 method for class 'gamboost':
predictors(x, ...)
## S3 method for class 'blackboost':
predictors(x, ...)
## S3 method for class 'BinaryTree':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'RandomForest':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'bagEarth':
predictors(x, ...)
## S3 method for class 'bagFDA':
predictors(x, ...)
## S3 method for class 'ppr':
predictors(x, ...)
pamrtrained and superpc: the training datapamrtrained and superpc: the feature selection thresholdsuperpc: the number of PCA components usedNA.randomForest, RandomForest, BinaryTree, rpart, ipredbagg, bagging, earth, fda, pamrtrained, superpc, bagEarth and bagFDA, an attempt was made to report the predictors that were actually used in the final model. In cases where the predictors cannot be determined, NA is returned. For example, nnet.default may retrun missing values form predictors.