predictors(x, ...)## S3 method for class 'train':
predictors(x, ...)
## S3 method for class 'terms':
predictors(x, ...)
## S3 method for class 'formula':
predictors(x, ...)
## S3 method for class 'list':
predictors(x, ...)
## S3 method for class 'mvr':
predictors(x, ...)
## S3 method for class 'gbm':
predictors(x, ...)
## S3 method for class 'Weka_classifier':
predictors(x, ...)
## S3 method for class 'fda':
predictors(x, ...)
## S3 method for class 'earth':
predictors(x, ...)
## S3 method for class 'gausspr':
predictors(x, ...)
## S3 method for class 'ksvm':
predictors(x, ...)
## S3 method for class 'lssvm':
predictors(x, ...)
## S3 method for class 'rvm':
predictors(x, ...)
## S3 method for class 'train':
predictors(x, ...)
## S3 method for class 'gpls':
predictors(x, ...)
## S3 method for class 'knn3':
predictors(x, ...)
## S3 method for class 'LogitBoost':
predictors(x, ...)
## S3 method for class 'lda':
predictors(x, ...)
## S3 method for class 'rda':
predictors(x, ...)
## S3 method for class 'multinom':
predictors(x, ...)
## S3 method for class 'nnet':
predictors(x, ...)
## S3 method for class 'pcaNNet':
predictors(x, ...)
## S3 method for class 'NaiveBayes':
predictors(x, ...)
## S3 method for class 'randomForest':
predictors(x, ...)
## S3 method for class 'pamrtrained':
predictors(x, newdata = NULL, threshold = NULL, ...)
## S3 method for class 'superpc':
predictors(x, newdata = NULL, threshold = NULL, n.components = NULL, ...)
## S3 method for class 'slda':
predictors(x, ...)
## S3 method for class 'rpart':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'regbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'classbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'glmboost':
predictors(x, ...)
## S3 method for class 'gamboost':
predictors(x, ...)
## S3 method for class 'blackboost':
predictors(x, ...)
## S3 method for class 'BinaryTree':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'RandomForest':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'bagEarth':
predictors(x, ...)
## S3 method for class 'bagFDA':
predictors(x, ...)
## S3 method for class 'ppr':
predictors(x, ...)
pamrtrained
and superpc
: the training datapamrtrained
and superpc
: the feature selection thresholdsuperpc
: the number of PCA components usedNA
.randomForest
, RandomForest
, BinaryTree
, rpart
, ipredbagg
, bagging
, earth
, fda
, pamrtrained
, superpc
, bagEarth
and bagFDA
, an attempt was made to report the predictors that were actually used in the final model. In cases where the predictors cannot be determined, NA
is returned. For example, nnet.default
may retrun missing values form predictors
.