data(BloodBrain)
set.seed(1)
tmp <- createDataPartition(logBBB,
p = .8,
times = 100)
rpartFit <- train(bbbDescr, logBBB,
"rpart",
tuneLength = 16,
trControl = trainControl(
method = "LGOCV", index = tmp))
ctreeFit <- train(bbbDescr, logBBB,
"ctree",
trControl = trainControl(
method = "LGOCV", index = tmp))
earthFit <- train(bbbDescr, logBBB,
"earth",
tuneLength = 20,
trControl = trainControl(
method = "LGOCV", index = tmp))
resamps <- resamples(list(CART = rpartFit,
CondInfTree = ctreeFit,
MARS = earthFit))
## or load pre-calculated results using:
## load(url("http://caret.r-forge.r-project.org/Classification_and_Regression_Training_files/exampleModels.RData"))
resamps
summary(resamps)
Run the code above in your browser using DataLab