predictors(x, ...)## S3 method for class 'bagEarth':
predictors(x, ...)
## S3 method for class 'bagFDA':
predictors(x, ...)
## S3 method for class 'BinaryTree':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'blackboost':
predictors(x, ...)
## S3 method for class 'classbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'dsa':
predictors(x, cuts = NULL, ...)
## S3 method for class 'earth':
predictors(x, ...)
## S3 method for class 'fda':
predictors(x, ...)
## S3 method for class 'foba':
predictors(x, k = NULL, ...)
## S3 method for class 'formula':
predictors(x, ...)
## S3 method for class 'gamboost':
predictors(x, ...)
## S3 method for class 'gausspr':
predictors(x, ...)
## S3 method for class 'gbm':
predictors(x, ...)
## S3 method for class 'glm':
predictors(x, ...)
## S3 method for class 'glmboost':
predictors(x, ...)
## S3 method for class 'glmnet':
predictors(x, lambda = NULL, ...)
## S3 method for class 'gpls':
predictors(x, ...)
## S3 method for class 'knn3':
predictors(x, ...)
## S3 method for class 'knnreg':
predictors(x, ...)
## S3 method for class 'ksvm':
predictors(x, ...)
## S3 method for class 'lars':
predictors(x, s = NULL, ...)
## S3 method for class 'lda':
predictors(x, ...)
## S3 method for class 'list':
predictors(x, ...)
## S3 method for class 'lm':
predictors(x, ...)
## S3 method for class 'LogitBoost':
predictors(x, ...)
## S3 method for class 'lssvm':
predictors(x, ...)
## S3 method for class 'mda':
predictors(x, ...)
## S3 method for class 'multinom':
predictors(x, ...)
## S3 method for class 'mvr':
predictors(x, ...)
## S3 method for class 'NaiveBayes':
predictors(x, ...)
## S3 method for class 'nnet':
predictors(x, ...)
## S3 method for class 'pamrtrained':
predictors(x, newdata = NULL, threshold = NULL, ...)
## S3 method for class 'pcaNNet':
predictors(x, ...)
## S3 method for class 'penfit':
predictors(x, ...)
## S3 method for class 'ppr':
predictors(x, ...)
## S3 method for class 'qda':
predictors(x, ...)
## S3 method for class 'randomForest':
predictors(x, ...)
## S3 method for class 'RandomForest':
predictors(x, ...)
## S3 method for class 'rda':
predictors(x, ...)
## S3 method for class 'regbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'rfe':
predictors(x, ...)
## S3 method for class 'rpart':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'rvm':
predictors(x, ...)
## S3 method for class 'sbf':
predictors(x, ...)
## S3 method for class 'sda':
predictors(x, ...)
## S3 method for class 'slda':
predictors(x, ...)
## S3 method for class 'smda':
predictors(x, ...)
## S3 method for class 'spls':
predictors(x, ...)
## S3 method for class 'splsda':
predictors(x, ...)
## S3 method for class 'superpc':
predictors(x, newdata = NULL, threshold = NULL, n.components = NULL, ...)
## S3 method for class 'terms':
predictors(x, ...)
## S3 method for class 'train':
predictors(x, ...)
## S3 method for class 'trocc':
predictors(x, ...)
## S3 method for class 'Weka_classifier':
predictors(x, ...)
pamr.train
and superpc.train
: the training datapamr.train
and superpc.train
: the feature selection thresholdsuperpc.train
: the number of PCA components usedglmnet
: the L1 regularization valuelars
: the path index. See predict.lars
foba
: the sparsity level (i.e. the number of selected terms for the model). See predict.foba
partDSA
only)NA
.randomForest
, cforest
, ctree
, rpart
, ipredbagg
, bagging
, earth
, fda
, pamr.train
, superpc.train
, bagEarth
and bagFDA
, an attempt was made to report the predictors that were actually used in the final model. In cases where the predictors cannot be determined, NA
is returned. For example, nnet
may retrun missing values from predictors
.