predictors(x, ...)## S3 method for class 'bagEarth':
predictors(x, ...)
## S3 method for class 'bagFDA':
predictors(x, ...)
## S3 method for class 'BinaryTree':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'blackboost':
predictors(x, ...)
## S3 method for class 'classbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'dsa':
predictors(x, cuts = NULL, ...)
## S3 method for class 'earth':
predictors(x, ...)
## S3 method for class 'fda':
predictors(x, ...)
## S3 method for class 'foba':
predictors(x, k = NULL, ...)
## S3 method for class 'formula':
predictors(x, ...)
## S3 method for class 'gam':
predictors(x, ...)
## S3 method for class 'gamboost':
predictors(x, ...)
## S3 method for class 'gausspr':
predictors(x, ...)
## S3 method for class 'gbm':
predictors(x, ...)
## S3 method for class 'glm':
predictors(x, ...)
## S3 method for class 'glmboost':
predictors(x, ...)
## S3 method for class 'glmnet':
predictors(x, lambda = NULL, ...)
## S3 method for class 'gpls':
predictors(x, ...)
## S3 method for class 'knn3':
predictors(x, ...)
## S3 method for class 'knnreg':
predictors(x, ...)
## S3 method for class 'ksvm':
predictors(x, ...)
## S3 method for class 'lars':
predictors(x, s = NULL, ...)
## S3 method for class 'lda':
predictors(x, ...)
## S3 method for class 'list':
predictors(x, ...)
## S3 method for class 'lm':
predictors(x, ...)
## S3 method for class 'logforest':
predictors(x, ...)
## S3 method for class 'logicBagg':
predictors(x, ...)
## S3 method for class 'LogitBoost':
predictors(x, ...)
## S3 method for class 'logreg':
predictors(x, ...)
## S3 method for class 'lssvm':
predictors(x, ...)
## S3 method for class 'mda':
predictors(x, ...)
## S3 method for class 'multinom':
predictors(x, ...)
## S3 method for class 'mvr':
predictors(x, ...)
## S3 method for class 'NaiveBayes':
predictors(x, ...)
## S3 method for class 'nnet':
predictors(x, ...)
## S3 method for class 'pamrtrained':
predictors(x, newdata = NULL, threshold = NULL, ...)
## S3 method for class 'pcaNNet':
predictors(x, ...)
## S3 method for class 'penfit':
predictors(x, ...)
## S3 method for class 'ppr':
predictors(x, ...)
## S3 method for class 'qda':
predictors(x, ...)
## S3 method for class 'randomForest':
predictors(x, ...)
## S3 method for class 'RandomForest':
predictors(x, ...)
## S3 method for class 'rda':
predictors(x, ...)
## S3 method for class 'regbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'rfe':
predictors(x, ...)
## S3 method for class 'rpart':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'rvm':
predictors(x, ...)
## S3 method for class 'sbf':
predictors(x, ...)
## S3 method for class 'sda':
predictors(x, ...)
## S3 method for class 'slda':
predictors(x, ...)
## S3 method for class 'smda':
predictors(x, ...)
## S3 method for class 'spls':
predictors(x, ...)
## S3 method for class 'splsda':
predictors(x, ...)
## S3 method for class 'superpc':
predictors(x, newdata = NULL, threshold = NULL, n.components = NULL, ...)
## S3 method for class 'terms':
predictors(x, ...)
## S3 method for class 'train':
predictors(x, ...)
## S3 method for class 'trocc':
predictors(x, ...)
## S3 method for class 'Weka_classifier':
predictors(x, ...)
pamr.train and superpc.train: the training datapamr.train and superpc.train: the feature selection thresholdsuperpc.train: the number of PCA components usedglmnet: the L1 regularization valuelars: the path index. See predict.larsfoba: the sparsity level (i.e. the number of selected terms for the model). See predict.fobapartDSA only)NA.randomForest, cforest, ctree, rpart, ipredbagg, bagging, earth, fda, pamr.train, superpc.train, bagEarth and bagFDA, an attempt was made to report the predictors that were actually used in the final model. In cases where the predictors cannot be determined, NA is returned. For example, nnet may retrun missing values from predictors.