## A simple example of bagging conditional inference regression trees:
data(BloodBrain)
treebag <- bag(bbbDescr, logBBB, B = 10,
bagControl = bagControl(fit = ctreeBag$fit,
predict = ctreeBag$pred,
aggregate = ctreeBag$aggregate))
## An example of pooling posterior probabilities to generate class predictions
data(mdrr)
## remove some zero variance predictors and linear dependencies
mdrrDescr <- mdrrDescr[, -nearZeroVar(mdrrDescr)]
mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .95)]
basicLDA <- train(mdrrDescr, mdrrClass, "lda")
bagLDA2 <- train(mdrrDescr, mdrrClass,
"bag",
B = 10,
bagControl(fit = ldaBag$fit,
predict = ldaBag$pred,
aggregate = ldaBag$aggregate),
tuneGrid = data.frame(.vars = c((1:10)*10 , ncol(mdrrDescr))))
Run the code above in your browser using DataLab