Learn R Programming

caret (version 5.07-001)

nearZeroVar: Identification of near zero variance predictors

Description

nearZeroVar diagnoses predictors that have one unique value (i.e. are zero variance predictors) or predictors that are have both of the following characteristics: they have very few unique values relative to the number of samples and the ratio of the frequency of the most common value to the frequency of the second most common value is large. checkConditionalX looks at the distribution of the columns of x conditioned on the levels of y and identifies columns of x that are sparse within groups of y.

Usage

nearZeroVar(x, freqCut = 95/5, uniqueCut = 10, saveMetrics = FALSE)
checkConditionalX(x, y)
checkResamples(index, x, y)

Arguments

Value

  • For nearZeroVar: if saveMetrics = FALSE, a vector of integers corresponding to the column positions of the problematic predictors. If saveMetrics = TRUE, a data frame with columns:
  • freqRatiothe ratio of frequencies for the most common value over the second most common value
  • percentUniquethe percentage of unique data points out of the total number of data points
  • zeroVara vector of logicals for whether the predictor has only one distinct value
  • nzva vector of logicals for whether the predictor is a near zero variance predictor
  • For checkResamples or checkConditionalX, a vector of column indicators for predictors with empty conditional distributions in at least one class of y.

Details

For example, an example of near zero variance predictor is one that, for 1000 samples, has two distinct values and 999 of them are a single value.

To be flagged, first the frequency of the most prevalent value over the second most frequent value (called the ``frequency ratio'') must be above freqCut. Secondly, the ``percent of unique values,'' the number of unique values divided by the total number of samples (times 100), must also be below uniqueCut.

In the above example, the frequency ratio is 999 and the unique value percentage is 0.0001.

Checking the conditional distribution of x may be needed for some models, such as naive Bayes where the conditional distributions should have at least one data point within a class.

Examples

Run this code
nearZeroVar(iris[, -5], saveMetrics = TRUE)

data(BloodBrain)
nearZeroVar(bbbDescr)


set.seed(1)
classes <- factor(rep(letters[1:3], each = 30))
x <- data.frame(x1 = rep(c(0, 1), 45),
                x2 = c(rep(0, 10), rep(1, 80)))

lapply(x, table, y = classes)
checkConditionalX(x, classes)

folds <- createFolds(classes, k = 3, returnTrain = TRUE)
x$x3 <- x$x1
x$x3[folds[[1]]] <- 0

checkResamples(folds, x, classes)

Run the code above in your browser using DataLab