predictors(x, ...)## S3 method for class 'bagEarth':
predictors(x, ...)
## S3 method for class 'bagFDA':
predictors(x, ...)
## S3 method for class 'BinaryTree':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'blackboost':
predictors(x, ...)
## S3 method for class 'classbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'dsa':
predictors(x, cuts = NULL, ...)
## S3 method for class 'earth':
predictors(x, ...)
## S3 method for class 'fda':
predictors(x, ...)
## S3 method for class 'foba':
predictors(x, k = NULL, ...)
## S3 method for class 'formula':
predictors(x, ...)
## S3 method for class 'gam':
predictors(x, ...)
## S3 method for class 'gamboost':
predictors(x, ...)
## S3 method for class 'gausspr':
predictors(x, ...)
## S3 method for class 'gbm':
predictors(x, ...)
## S3 method for class 'glm':
predictors(x, ...)
## S3 method for class 'glmboost':
predictors(x, ...)
## S3 method for class 'glmnet':
predictors(x, lambda = NULL, ...)
## S3 method for class 'gpls':
predictors(x, ...)
## S3 method for class 'knn3':
predictors(x, ...)
## S3 method for class 'knnreg':
predictors(x, ...)
## S3 method for class 'ksvm':
predictors(x, ...)
## S3 method for class 'lars':
predictors(x, s = NULL, ...)
## S3 method for class 'lda':
predictors(x, ...)
## S3 method for class 'list':
predictors(x, ...)
## S3 method for class 'lm':
predictors(x, ...)
## S3 method for class 'logforest':
predictors(x, ...)
## S3 method for class 'logicBagg':
predictors(x, ...)
## S3 method for class 'LogitBoost':
predictors(x, ...)
## S3 method for class 'logreg':
predictors(x, ...)
## S3 method for class 'lssvm':
predictors(x, ...)
## S3 method for class 'mda':
predictors(x, ...)
## S3 method for class 'multinom':
predictors(x, ...)
## S3 method for class 'mvr':
predictors(x, ...)
## S3 method for class 'NaiveBayes':
predictors(x, ...)
## S3 method for class 'nnet':
predictors(x, ...)
## S3 method for class 'pamrtrained':
predictors(x, newdata = NULL, threshold = NULL, ...)
## S3 method for class 'pcaNNet':
predictors(x, ...)
## S3 method for class 'penfit':
predictors(x, ...)
## S3 method for class 'ppr':
predictors(x, ...)
## S3 method for class 'qda':
predictors(x, ...)
## S3 method for class 'randomForest':
predictors(x, ...)
## S3 method for class 'RandomForest':
predictors(x, ...)
## S3 method for class 'rda':
predictors(x, ...)
## S3 method for class 'regbagg':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'rfe':
predictors(x, ...)
## S3 method for class 'rpart':
predictors(x, surrogate = TRUE, ...)
## S3 method for class 'rvm':
predictors(x, ...)
## S3 method for class 'sbf':
predictors(x, ...)
## S3 method for class 'sda':
predictors(x, ...)
## S3 method for class 'slda':
predictors(x, ...)
## S3 method for class 'smda':
predictors(x, ...)
## S3 method for class 'spls':
predictors(x, ...)
## S3 method for class 'splsda':
predictors(x, ...)
## S3 method for class 'superpc':
predictors(x, newdata = NULL, threshold = NULL, n.components = NULL, ...)
## S3 method for class 'terms':
predictors(x, ...)
## S3 method for class 'train':
predictors(x, ...)
## S3 method for class 'trocc':
predictors(x, ...)
## S3 method for class 'Weka_classifier':
predictors(x, ...)
NA
.randomForest
, cforest
, ctree
, rpart
, ipredbagg
, bagging
, earth
, fda
, pamr.train
, superpc.train
, bagEarth
and bagFDA
, an attempt was made to report the predictors that were actually used in the final model. In cases where the predictors cannot be determined, NA
is returned. For example, nnet
may return missing values from predictors
.