## Not run:
# # regression example
# data(BostonHousing)
# rpartFit <- train(BostonHousing[1:100, -c(4, 14)],
# BostonHousing$medv[1:100],
# "rpart", tuneLength = 9)
# plsFit <- train(BostonHousing[1:100, -c(4, 14)],
# BostonHousing$medv[1:100],
# "pls")
#
# predVals <- extractPrediction(list(rpartFit, plsFit),
# testX = BostonHousing[101:200, -c(4, 14)],
# testY = BostonHousing$medv[101:200],
# unkX = BostonHousing[201:300, -c(4, 14)])
#
# plotObsVsPred(predVals)
#
#
# #classification example
# data(Satellite)
# numSamples <- dim(Satellite)[1]
# set.seed(716)
#
# varIndex <- 1:numSamples
#
# trainSamples <- sample(varIndex, 150)
#
# varIndex <- (1:numSamples)[-trainSamples]
# testSamples <- sample(varIndex, 100)
#
# varIndex <- (1:numSamples)[-c(testSamples, trainSamples)]
# unkSamples <- sample(varIndex, 50)
#
# trainX <- Satellite[trainSamples, -37]
# trainY <- Satellite[trainSamples, 37]
#
# testX <- Satellite[testSamples, -37]
# testY <- Satellite[testSamples, 37]
#
# unkX <- Satellite[unkSamples, -37]
#
# knnFit <- train(trainX, trainY, "knn")
# rpartFit <- train(trainX, trainY, "rpart")
#
# predTargets <- extractPrediction(list(knnFit, rpartFit),
# testX = testX,
# testY = testY,
# unkX = unkX)
#
# plotObsVsPred(predTargets)
# ## End(Not run)
Run the code above in your browser using DataLab