## Not run:
# data(mdrr)
# set.seed(1)
# inTrain <- sample(seq(along = mdrrClass), 450)
#
# nzv <- nearZeroVar(mdrrDescr)
# filteredDescr <- mdrrDescr[, -nzv]
#
# training <- filteredDescr[inTrain,]
# test <- filteredDescr[-inTrain,]
# trainMDRR <- mdrrClass[inTrain]
# testMDRR <- mdrrClass[-inTrain]
#
# preProcValues <- preProcess(training)
#
# trainDescr <- predict(preProcValues, training)
# testDescr <- predict(preProcValues, test)
#
# useBayes <- plsda(trainDescr, trainMDRR, ncomp = 5,
# probMethod = "Bayes")
# useSoftmax <- plsda(trainDescr, trainMDRR, ncomp = 5)
#
# confusionMatrix(predict(useBayes, testDescr),
# testMDRR)
#
# confusionMatrix(predict(useSoftmax, testDescr),
# testMDRR)
#
# histogram(~predict(useBayes, testDescr, type = "prob")[,"Active",]
# | testMDRR, xlab = "Active Prob", xlim = c(-.1,1.1))
# histogram(~predict(useSoftmax, testDescr, type = "prob")[,"Active",]
# | testMDRR, xlab = "Active Prob", xlim = c(-.1,1.1))
#
#
# ## different sized objects are returned
# length(predict(useBayes, testDescr))
# dim(predict(useBayes, testDescr, ncomp = 1:3))
# dim(predict(useBayes, testDescr, type = "prob"))
# dim(predict(useBayes, testDescr, type = "prob", ncomp = 1:3))
#
# ## Using spls:
# ## (As of 11/09, the spls package now has a similar function with
# ## the same mane. To avoid conflicts, use caret:::splsda to
# ## get this version)
#
# splsFit <- caret:::splsda(trainDescr, trainMDRR,
# K = 5, eta = .9,
# probMethod = "Bayes")
#
# confusionMatrix(caret:::predict.splsda(splsFit, testDescr),
# testMDRR)
# ## End(Not run)
Run the code above in your browser using DataLab