## Not run:
# data(BloodBrain)
#
# x <- scale(bbbDescr[,-nearZeroVar(bbbDescr)])
# x <- x[, -findCorrelation(cor(x), .8)]
# x <- as.data.frame(x)
#
# set.seed(1)
# lmProfile <- rfe(x, logBBB,
# sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
# rfeControl = rfeControl(functions = lmFuncs,
# number = 200))
# set.seed(1)
# lmProfile2 <- rfe(x, logBBB,
# sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
# rfeControl = rfeControl(functions = lmFuncs,
# rerank = TRUE,
# number = 200))
#
# xyplot(lmProfile$results$RMSE + lmProfile2$results$RMSE ~
# lmProfile$results$Variables,
# type = c("g", "p", "l"),
# auto.key = TRUE)
#
# rfProfile <- rfe(x, logBBB,
# sizes = c(2, 5, 10, 20),
# rfeControl = rfeControl(functions = rfFuncs))
#
# bagProfile <- rfe(x, logBBB,
# sizes = c(2, 5, 10, 20),
# rfeControl = rfeControl(functions = treebagFuncs))
#
# set.seed(1)
# svmProfile <- rfe(x, logBBB,
# sizes = c(2, 5, 10, 20),
# rfeControl = rfeControl(functions = caretFuncs,
# number = 200),
# ## pass options to train()
# method = "svmRadial")
#
# ## classification
#
# data(mdrr)
# mdrrDescr <- mdrrDescr[,-nearZeroVar(mdrrDescr)]
# mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .8)]
#
# set.seed(1)
# inTrain <- createDataPartition(mdrrClass, p = .75, list = FALSE)[,1]
#
# train <- mdrrDescr[ inTrain, ]
# test <- mdrrDescr[-inTrain, ]
# trainClass <- mdrrClass[ inTrain]
# testClass <- mdrrClass[-inTrain]
#
# set.seed(2)
# ldaProfile <- rfe(train, trainClass,
# sizes = c(1:10, 15, 30),
# rfeControl = rfeControl(functions = ldaFuncs, method = "cv"))
# plot(ldaProfile, type = c("o", "g"))
#
# postResample(predict(ldaProfile, test), testClass)
#
# ## End(Not run)
#######################################
## Parallel Processing Example via multicore
## Not run:
# library(doMC)
#
# ## Note: if the underlying model also uses foreach, the
# ## number of cores specified above will double (along with
# ## the memory requirements)
# registerDoMC(cores = 2)
#
# set.seed(1)
# lmProfile <- rfe(x, logBBB,
# sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
# rfeControl = rfeControl(functions = lmFuncs,
# number = 200))
#
#
# ## End(Not run)
Run the code above in your browser using DataLab