train
. Custom models can also be created. See the URL below.AdaBoost Classification Trees (method = 'adaboost'
)
For classification using package fastAdaboost with tuning parameters:
nIter
, numeric)
method
, character)
AdaBoost.M1 (method = 'AdaBoost.M1'
)
For classification using packages adabag and plyr with tuning parameters:
mfinal
, numeric)
maxdepth
, numeric)
coeflearn
, character)
Adaptive Mixture Discriminant Analysis (method = 'amdai'
)
For classification using package adaptDA with tuning parameters:
model
, character)
Adaptive-Network-Based Fuzzy Inference System (method = 'ANFIS'
)
For regression using package frbs with tuning parameters:
num.labels
, numeric)
max.iter
, numeric)
Adjacent Categories Probability Model for Ordinal Data (method = 'vglmAdjCat'
)
For classification using package VGAM with tuning parameters:
parallel
, logical)
link
, character)
Bagged AdaBoost (method = 'AdaBag'
)
For classification using packages adabag and plyr with tuning parameters:
mfinal
, numeric)
maxdepth
, numeric)
Bagged CART (method = 'treebag'
)
For classification and regression using packages ipred, plyr and e1071 with no tuning parameters
Bagged FDA using gCV Pruning (method = 'bagFDAGCV'
)
For classification using package earth with tuning parameters:
degree
, numeric)
Bagged Flexible Discriminant Analysis (method = 'bagFDA'
)
For classification using packages earth and mda with tuning parameters:
degree
, numeric)
nprune
, numeric)
Bagged Logic Regression (method = 'logicBag'
)
For classification and regression using package logicFS with tuning parameters:
nleaves
, numeric)
ntrees
, numeric)
Bagged MARS (method = 'bagEarth'
)
For classification and regression using package earth with tuning parameters:
nprune
, numeric)
degree
, numeric)
Bagged MARS using gCV Pruning (method = 'bagEarthGCV'
)
For classification and regression using package earth with tuning parameters:
degree
, numeric)
Bagged Model (method = 'bag'
)
For classification and regression using package caret with tuning parameters:
vars
, numeric)
Bayesian Additive Regression Trees (method = 'bartMachine'
)
For classification and regression using package bartMachine with tuning parameters:
num_trees
, numeric)
k
, numeric)
alpha
, numeric)
beta
, numeric)
nu
, numeric)
Bayesian Generalized Linear Model (method = 'bayesglm'
)
For classification and regression using package arm with no tuning parameters
Bayesian Regularized Neural Networks (method = 'brnn'
)
For regression using package brnn with tuning parameters:
neurons
, numeric)
Bayesian Ridge Regression (method = 'bridge'
)
For regression using package monomvn with no tuning parameters
Bayesian Ridge Regression (Model Averaged) (method = 'blassoAveraged'
)
For regression using package monomvn with no tuning parameters
Binary Discriminant Analysis (method = 'binda'
)
For classification using package binda with tuning parameters:
lambda.freqs
, numeric)
Boosted Classification Trees (method = 'ada'
)
For classification using packages ada and plyr with tuning parameters:
iter
, numeric)
maxdepth
, numeric)
nu
, numeric)
Boosted Generalized Additive Model (method = 'gamboost'
)
For classification and regression using packages mboost and plyr with tuning parameters:
mstop
, numeric)
prune
, character)
Boosted Generalized Linear Model (method = 'glmboost'
)
For classification and regression using packages plyr and mboost with tuning parameters:
mstop
, numeric)
prune
, character)
Boosted Linear Model (method = 'BstLm'
)
For classification and regression using packages bst and plyr with tuning parameters:
mstop
, numeric)
nu
, numeric)
Boosted Logistic Regression (method = 'LogitBoost'
)
For classification using package caTools with tuning parameters:
nIter
, numeric)
Boosted Smoothing Spline (method = 'bstSm'
)
For classification and regression using packages bst and plyr with tuning parameters:
mstop
, numeric)
nu
, numeric)
Boosted Tree (method = 'blackboost'
)
For classification and regression using packages party, mboost and plyr with tuning parameters:
mstop
, numeric)
maxdepth
, numeric)
Boosted Tree (method = 'bstTree'
)
For classification and regression using packages bst and plyr with tuning parameters:
mstop
, numeric)
maxdepth
, numeric)
nu
, numeric)
C4.5-like Trees (method = 'J48'
)
For classification using package RWeka with tuning parameters:
C
, numeric)
C5.0 (method = 'C5.0'
)
For classification using packages C50 and plyr with tuning parameters:
trials
, numeric)
model
, character)
winnow
, logical)
CART (method = 'rpart'
)
For classification and regression using package rpart with tuning parameters:
cp
, numeric)
CART (method = 'rpart1SE'
)
For classification and regression using package rpart with no tuning parameters
CART (method = 'rpart2'
)
For classification and regression using package rpart with tuning parameters:
maxdepth
, numeric)
CART or Ordinal Responses (method = 'rpartScore'
)
For classification using packages rpartScore and plyr with tuning parameters:
cp
, numeric)
split
, character)
prune
, character)
CHi-squared Automated Interaction Detection (method = 'chaid'
)
For classification using package CHAID with tuning parameters:
alpha2
, numeric)
alpha3
, numeric)
alpha4
, numeric)
Conditional Inference Random Forest (method = 'cforest'
)
For classification and regression using package party with tuning parameters:
mtry
, numeric)
Conditional Inference Tree (method = 'ctree'
)
For classification and regression using package party with tuning parameters:
mincriterion
, numeric)
Conditional Inference Tree (method = 'ctree2'
)
For classification and regression using package party with tuning parameters:
maxdepth
, numeric)
mincriterion
, numeric)
Continuation Ratio Model for Ordinal Data (method = 'vglmContRatio'
)
For classification using package VGAM with tuning parameters:
parallel
, logical)
link
, character)
Cost-Sensitive C5.0 (method = 'C5.0Cost'
)
For classification using packages C50 and plyr with tuning parameters:
trials
, numeric)
model
, character)
winnow
, logical)
cost
, numeric)
Cost-Sensitive CART (method = 'rpartCost'
)
For classification using package rpart with tuning parameters:
cp
, numeric)
Cost
, numeric)
Cubist (method = 'cubist'
)
For regression using package Cubist with tuning parameters:
committees
, numeric)
neighbors
, numeric)
Cumulative Probability Model for Ordinal Data (method = 'vglmCumulative'
)
For classification using package VGAM with tuning parameters:
parallel
, logical)
link
, character)
DeepBoost (method = 'deepboost'
)
For classification using package deepboost with tuning parameters:
num_iter
, numeric)
tree_depth
, numeric)
beta
, numeric)
lambda
, numeric)
loss_type
, character)
Diagonal Discriminant Analysis (method = 'dda'
)
For classification using package sparsediscrim with tuning parameters:
model
, character)
shrinkage
, character)
Distance Weighted Discrimination with Polynomial Kernel (method = 'dwdPoly'
)
For classification using package kerndwd with tuning parameters:
lambda
, numeric)
qval
, numeric)
degree
, numeric)
scale
, numeric)
Distance Weighted Discrimination with Radial Basis Function Kernel (method = 'dwdRadial'
)
For classification using packages kernlab and kerndwd with tuning parameters:
lambda
, numeric)
qval
, numeric)
sigma
, numeric)
Dynamic Evolving Neural-Fuzzy Inference System (method = 'DENFIS'
)
For regression using package frbs with tuning parameters:
Dthr
, numeric)
max.iter
, numeric)
Elasticnet (method = 'enet'
)
For regression using package elasticnet with tuning parameters:
fraction
, numeric)
lambda
, numeric)
Ensemble Partial Least Squares Regression (method = 'enpls'
)
For regression using package enpls with tuning parameters:
maxcomp
, numeric)
Ensemble Partial Least Squares Regression with Feature Selection (method = 'enpls.fs'
)
For regression using package enpls with tuning parameters:
maxcomp
, numeric)
threshold
, numeric)
Ensembles of Generalized Lienar Models (method = 'randomGLM'
)
For classification and regression using package randomGLM with tuning parameters:
maxInteractionOrder
, numeric)
eXtreme Gradient Boosting (method = 'xgbLinear'
)
For classification and regression using package xgboost with tuning parameters:
nrounds
, numeric)
lambda
, numeric)
alpha
, numeric)
eta
, numeric)
eXtreme Gradient Boosting (method = 'xgbTree'
)
For classification and regression using packages xgboost and plyr with tuning parameters:
nrounds
, numeric)
max_depth
, numeric)
eta
, numeric)
gamma
, numeric)
colsample_bytree
, numeric)
min_child_weight
, numeric)
Extreme Learning Machine (method = 'elm'
)
For classification and regression using package elmNN with tuning parameters:
nhid
, numeric)
actfun
, character)
Factor-Based Linear Discriminant Analysis (method = 'RFlda'
)
For classification using package HiDimDA with tuning parameters:
q
, numeric)
Flexible Discriminant Analysis (method = 'fda'
)
For classification using packages earth and mda with tuning parameters:
degree
, numeric)
nprune
, numeric)
Fuzzy Inference Rules by Descent Method (method = 'FIR.DM'
)
For regression using package frbs with tuning parameters:
num.labels
, numeric)
max.iter
, numeric)
Fuzzy Rules Using Chi's Method (method = 'FRBCS.CHI'
)
For classification using package frbs with tuning parameters:
num.labels
, numeric)
type.mf
, character)
Fuzzy Rules Using Genetic Cooperative-Competitive Learning (method = 'GFS.GCCL'
)
For classification using package frbs with tuning parameters:
num.labels
, numeric)
popu.size
, numeric)
max.gen
, numeric)
Fuzzy Rules Using Genetic Cooperative-Competitive Learning and Pittsburgh (method = 'FH.GBML'
)
For classification using package frbs with tuning parameters:
max.num.rule
, numeric)
popu.size
, numeric)
max.gen
, numeric)
Fuzzy Rules Using the Structural Learning Algorithm on Vague Environment (method = 'SLAVE'
)
For classification using package frbs with tuning parameters:
num.labels
, numeric)
max.iter
, numeric)
max.gen
, numeric)
Fuzzy Rules via MOGUL (method = 'GFS.FR.MOGUL'
)
For regression using package frbs with tuning parameters:
max.gen
, numeric)
max.iter
, numeric)
max.tune
, numeric)
Fuzzy Rules via Thrift (method = 'GFS.THRIFT'
)
For regression using package frbs with tuning parameters:
popu.size
, numeric)
num.labels
, numeric)
max.gen
, numeric)
Fuzzy Rules with Weight Factor (method = 'FRBCS.W'
)
For classification using package frbs with tuning parameters:
num.labels
, numeric)
type.mf
, character)
Gaussian Process (method = 'gaussprLinear'
)
For classification and regression using package kernlab with no tuning parameters
Gaussian Process with Polynomial Kernel (method = 'gaussprPoly'
)
For classification and regression using package kernlab with tuning parameters:
degree
, numeric)
scale
, numeric)
Gaussian Process with Radial Basis Function Kernel (method = 'gaussprRadial'
)
For classification and regression using package kernlab with tuning parameters:
sigma
, numeric)
Generalized Additive Model using LOESS (method = 'gamLoess'
)
For classification and regression using package gam with tuning parameters:
span
, numeric)
degree
, numeric)
Generalized Additive Model using Splines (method = 'bam'
)
For classification and regression using package mgcv with tuning parameters:
select
, logical)
method
, character)
Generalized Additive Model using Splines (method = 'gam'
)
For classification and regression using package mgcv with tuning parameters:
select
, logical)
method
, character)
Generalized Additive Model using Splines (method = 'gamSpline'
)
For classification and regression using package gam with tuning parameters:
df
, numeric)
Generalized Linear Model (method = 'glm'
)
For classification and regression with no tuning parameters
Generalized Linear Model with Stepwise Feature Selection (method = 'glmStepAIC'
)
For classification and regression using package MASS with no tuning parameters
Generalized Partial Least Squares (method = 'gpls'
)
For classification using package gpls with tuning parameters:
K.prov
, numeric)
Genetic Lateral Tuning and Rule Selection of Linguistic Fuzzy Systems (method = 'GFS.LT.RS'
)
For regression using package frbs with tuning parameters:
popu.size
, numeric)
num.labels
, numeric)
max.gen
, numeric)
glmnet (method = 'glmnet'
)
For classification and regression using package glmnet with tuning parameters:
alpha
, numeric)
lambda
, numeric)
Greedy Prototype Selection (method = 'protoclass'
)
For classification using packages proxy and protoclass with tuning parameters:
eps
, numeric)
Minkowski
, numeric)
Heteroscedastic Discriminant Analysis (method = 'hda'
)
For classification using package hda with tuning parameters:
gamma
, numeric)
lambda
, numeric)
newdim
, numeric)
High Dimensional Discriminant Analysis (method = 'hdda'
)
For classification using package HDclassif with tuning parameters:
threshold
, character)
model
, numeric)
High-Dimensional Regularized Discriminant Analysis (method = 'hdrda'
)
For classification using package sparsediscrim with tuning parameters:
gamma
, numeric)
lambda
, numeric)
shrinkage_type
, character)
Hybrid Neural Fuzzy Inference System (method = 'HYFIS'
)
For regression using package frbs with tuning parameters:
num.labels
, numeric)
max.iter
, numeric)
Independent Component Regression (method = 'icr'
)
For regression using package fastICA with tuning parameters:
n.comp
, numeric)
k-Nearest Neighbors (method = 'kknn'
)
For classification and regression using package kknn with tuning parameters:
kmax
, numeric)
distance
, numeric)
kernel
, character)
k-Nearest Neighbors (method = 'knn'
)
For classification and regression with tuning parameters:
k
, numeric)
Knn regression via sklearn.neighbors.KNeighborsRegressor (method = 'pythonKnnReg'
)
For regression using package rPython with tuning parameters:
n_neighbors
, numeric)
weights
, character)
algorithm
, character)
leaf_size
, numeric)
metric
, character)
p
, numeric)
L2 Regularized Linear Support Vector Machines with Class Weights (method = 'svmLinearWeights2'
)
For classification using package LiblineaR with tuning parameters:
cost
, numeric)
Loss
, character)
weight
, numeric)
L2 Regularized Support Vector Machine (dual) with Linear Kernel (method = 'svmLinear3'
)
For classification and regression using package LiblineaR with tuning parameters:
cost
, numeric)
Loss
, character)
Learning Vector Quantization (method = 'lvq'
)
For classification using package class with tuning parameters:
size
, numeric)
k
, numeric)
Least Angle Regression (method = 'lars'
)
For regression using package lars with tuning parameters:
fraction
, numeric)
Least Angle Regression (method = 'lars2'
)
For regression using package lars with tuning parameters:
step
, numeric)
Least Squares Support Vector Machine (method = 'lssvmLinear'
)
For classification using package kernlab with tuning parameters:
tau
, numeric)
Least Squares Support Vector Machine with Polynomial Kernel (method = 'lssvmPoly'
)
For classification using package kernlab with tuning parameters:
degree
, numeric)
scale
, numeric)
tau
, numeric)
Least Squares Support Vector Machine with Radial Basis Function Kernel (method = 'lssvmRadial'
)
For classification using package kernlab with tuning parameters:
sigma
, numeric)
tau
, numeric)
Linear Discriminant Analysis (method = 'lda'
)
For classification using package MASS with no tuning parameters
Linear Discriminant Analysis (method = 'lda2'
)
For classification using package MASS with tuning parameters:
dimen
, numeric)
Linear Discriminant Analysis with Stepwise Feature Selection (method = 'stepLDA'
)
For classification using packages klaR and MASS with tuning parameters:
maxvar
, numeric)
direction
, character)
Linear Distance Weighted Discrimination (method = 'dwdLinear'
)
For classification using package kerndwd with tuning parameters:
lambda
, numeric)
qval
, numeric)
Linear Regression (method = 'lm'
)
For regression with tuning parameters:
intercept
, logical)
Linear Regression with Backwards Selection (method = 'leapBackward'
)
For regression using package leaps with tuning parameters:
nvmax
, numeric)
Linear Regression with Forward Selection (method = 'leapForward'
)
For regression using package leaps with tuning parameters:
nvmax
, numeric)
Linear Regression with Stepwise Selection (method = 'leapSeq'
)
For regression using package leaps with tuning parameters:
nvmax
, numeric)
Linear Regression with Stepwise Selection (method = 'lmStepAIC'
)
For regression using package MASS with no tuning parameters
Linear Support Vector Machines with Class Weights (method = 'svmLinearWeights'
)
For classification using package e1071 with tuning parameters:
cost
, numeric)
weight
, numeric)
Localized Linear Discriminant Analysis (method = 'loclda'
)
For classification using package klaR with tuning parameters:
k
, numeric)
Logic Regression (method = 'logreg'
)
For classification and regression using package LogicReg with tuning parameters:
treesize
, numeric)
ntrees
, numeric)
Logistic Model Trees (method = 'LMT'
)
For classification using package RWeka with tuning parameters:
iter
, numeric)
Maximum Uncertainty Linear Discriminant Analysis (method = 'Mlda'
)
For classification using package HiDimDA with no tuning parameters
Mixture Discriminant Analysis (method = 'mda'
)
For classification using package mda with tuning parameters:
subclasses
, numeric)
Model Averaged Naive Bayes Classifier (method = 'manb'
)
For classification using package bnclassify with tuning parameters:
smooth
, numeric)
prior
, numeric)
Model Averaged Neural Network (method = 'avNNet'
)
For classification and regression using package nnet with tuning parameters:
size
, numeric)
decay
, numeric)
bag
, logical)
Model Rules (method = 'M5Rules'
)
For regression using package RWeka with tuning parameters:
pruned
, character)
smoothed
, character)
Model Tree (method = 'M5'
)
For regression using package RWeka with tuning parameters:
pruned
, character)
smoothed
, character)
rules
, character)
Multi-Layer Perceptron (method = 'mlp'
)
For classification and regression using package RSNNS with tuning parameters:
size
, numeric)
Multi-Layer Perceptron (method = 'mlpWeightDecay'
)
For classification and regression using package RSNNS with tuning parameters:
size
, numeric)
decay
, numeric)
Multi-Layer Perceptron, multiple layers (method = 'mlpWeightDecayML'
)
For classification and regression using package RSNNS with tuning parameters:
layer1
, numeric)
layer2
, numeric)
layer3
, numeric)
decay
, numeric)
Multi-Layer Perceptron, with multiple layers (method = 'mlpML'
)
For classification and regression using package RSNNS with tuning parameters:
layer1
, numeric)
layer2
, numeric)
layer3
, numeric)
Multilayer Perceptron Network by Stochastic Gradient Descent (method = 'mlpSGD'
)
For regression using package FCNN4R with tuning parameters:
size
, numeric)
l2reg
, numeric)
lambda
, numeric)
learn_rate
, numeric)
momentum
, numeric)
gamma
, numeric)
minibatchsz
, numeric)
repeats
, numeric)
Multivariate Adaptive Regression Spline (method = 'earth'
)
For classification and regression using package earth with tuning parameters:
nprune
, numeric)
degree
, numeric)
Multivariate Adaptive Regression Splines (method = 'gcvEarth'
)
For classification and regression using package earth with tuning parameters:
degree
, numeric)
Naive Bayes (method = 'nb'
)
For classification using package klaR with tuning parameters:
fL
, numeric)
usekernel
, logical)
adjust
, numeric)
Naive Bayes Classifier (method = 'nbDiscrete'
)
For classification using package bnclassify with tuning parameters:
smooth
, numeric)
Naive Bayes Classifier with Attribute Weighting (method = 'awnb'
)
For classification using package bnclassify with tuning parameters:
smooth
, numeric)
Nearest Shrunken Centroids (method = 'pam'
)
For classification using package pamr with tuning parameters:
threshold
, numeric)
Neural Network (method = 'neuralnet'
)
For regression using package neuralnet with tuning parameters:
layer1
, numeric)
layer2
, numeric)
layer3
, numeric)
Neural Network (method = 'nnet'
)
For classification and regression using package nnet with tuning parameters:
size
, numeric)
decay
, numeric)
Neural Networks with Feature Extraction (method = 'pcaNNet'
)
For classification and regression using package nnet with tuning parameters:
size
, numeric)
decay
, numeric)
Non-Convex Penalized Quantile Regression (method = 'rqnc'
)
For regression using package rqPen with tuning parameters:
lambda
, numeric)
penalty
, character)
Non-Negative Least Squares (method = 'nnls'
)
For regression using package nnls with no tuning parameters
Oblique Random Forest (method = 'ORFlog'
)
For classification using package obliqueRF with tuning parameters:
mtry
, numeric)
Oblique Random Forest (method = 'ORFpls'
)
For classification using package obliqueRF with tuning parameters:
mtry
, numeric)
Oblique Random Forest (method = 'ORFridge'
)
For classification using package obliqueRF with tuning parameters:
mtry
, numeric)
Oblique Random Forest (method = 'ORFsvm'
)
For classification using package obliqueRF with tuning parameters:
mtry
, numeric)
Oblique Trees (method = 'oblique.tree'
)
For classification using package oblique.tree with tuning parameters:
oblique.splits
, character)
variable.selection
, character)
Optimal Weighted Nearest Neighbor Classifier (method = 'ownn'
)
For classification using package snn with tuning parameters:
K
, numeric)
Ordered Logistic or Probit Regression (method = 'polr'
)
For classification using package MASS with tuning parameters:
method
, character)
Parallel Random Forest (method = 'parRF'
)
For classification and regression using packages e1071, randomForest and foreach with tuning parameters:
mtry
, numeric)
partDSA (method = 'partDSA'
)
For classification and regression using package partDSA with tuning parameters:
cut.off.growth
, numeric)
MPD
, numeric)
Partial Least Squares (method = 'kernelpls'
)
For classification and regression using package pls with tuning parameters:
ncomp
, numeric)
Partial Least Squares (method = 'pls'
)
For classification and regression using package pls with tuning parameters:
ncomp
, numeric)
Partial Least Squares (method = 'simpls'
)
For classification and regression using package pls with tuning parameters:
ncomp
, numeric)
Partial Least Squares (method = 'widekernelpls'
)
For classification and regression using package pls with tuning parameters:
ncomp
, numeric)
Partial Least Squares Generalized Linear Models (method = 'plsRglm'
)
For classification and regression using package plsRglm with tuning parameters:
nt
, numeric)
alpha.pvals.expli
, numeric)
Penalized Discriminant Analysis (method = 'pda'
)
For classification using package mda with tuning parameters:
lambda
, numeric)
Penalized Discriminant Analysis (method = 'pda2'
)
For classification using package mda with tuning parameters:
df
, numeric)
Penalized Linear Discriminant Analysis (method = 'PenalizedLDA'
)
For classification using packages penalizedLDA and plyr with tuning parameters:
lambda
, numeric)
K
, numeric)
Penalized Linear Regression (method = 'penalized'
)
For regression using package penalized with tuning parameters:
lambda1
, numeric)
lambda2
, numeric)
Penalized Logistic Regression (method = 'plr'
)
For classification using package stepPlr with tuning parameters:
lambda
, numeric)
cp
, character)
Penalized Multinomial Regression (method = 'multinom'
)
For classification using package nnet with tuning parameters:
decay
, numeric)
Penalized Ordinal Regression (method = 'ordinalNet'
)
For classification and regression using packages ordinalNet and plyr with tuning parameters:
alpha
, numeric)
criteria
, character)
link
, character)
Polynomial Kernel Regularized Least Squares (method = 'krlsPoly'
)
For regression using package KRLS with tuning parameters:
lambda
, numeric)
degree
, numeric)
Principal Component Analysis (method = 'pcr'
)
For regression using package pls with tuning parameters:
ncomp
, numeric)
Projection Pursuit Regression (method = 'ppr'
)
For regression with tuning parameters:
nterms
, numeric)
Quadratic Discriminant Analysis (method = 'qda'
)
For classification using package MASS with no tuning parameters
Quadratic Discriminant Analysis with Stepwise Feature Selection (method = 'stepQDA'
)
For classification using packages klaR and MASS with tuning parameters:
maxvar
, numeric)
direction
, character)
Quantile Random Forest (method = 'qrf'
)
For regression using package quantregForest with tuning parameters:
mtry
, numeric)
Quantile Regression Neural Network (method = 'qrnn'
)
For regression using package qrnn with tuning parameters:
n.hidden
, numeric)
penalty
, numeric)
bag
, logical)
Quantile Regression with LASSO penalty (method = 'rqlasso'
)
For regression using package rqPen with tuning parameters:
lambda
, numeric)
Radial Basis Function Kernel Regularized Least Squares (method = 'krlsRadial'
)
For regression using packages KRLS and kernlab with tuning parameters:
lambda
, numeric)
sigma
, numeric)
Radial Basis Function Network (method = 'rbf'
)
For classification and regression using package RSNNS with tuning parameters:
size
, numeric)
Radial Basis Function Network (method = 'rbfDDA'
)
For classification and regression using package RSNNS with tuning parameters:
negativeThreshold
, numeric)
Random Ferns (method = 'rFerns'
)
For classification using package rFerns with tuning parameters:
depth
, numeric)
Random Forest (method = 'ranger'
)
For classification and regression using packages e1071 and ranger with tuning parameters:
mtry
, numeric)
Random Forest (method = 'Rborist'
)
For classification and regression using package Rborist with tuning parameters:
predFixed
, numeric)
Random Forest (method = 'rf'
)
For classification and regression using package randomForest with tuning parameters:
mtry
, numeric)
Random Forest by Randomization (method = 'extraTrees'
)
For classification and regression using package extraTrees with tuning parameters:
mtry
, numeric)
numRandomCuts
, numeric)
Random Forest Rule-Based Model (method = 'rfRules'
)
For classification and regression using packages randomForest, inTrees and plyr with tuning parameters:
mtry
, numeric)
maxdepth
, numeric)
Random Forest with Additional Feature Selection (method = 'Boruta'
)
For classification and regression using packages Boruta and randomForest with tuning parameters:
mtry
, numeric)
Regularized Discriminant Analysis (method = 'rda'
)
For classification using package klaR with tuning parameters:
gamma
, numeric)
lambda
, numeric)
Regularized Linear Discriminant Analysis (method = 'rlda'
)
For classification using package sparsediscrim with tuning parameters:
estimator
, character)
Regularized Random Forest (method = 'RRF'
)
For classification and regression using packages randomForest and RRF with tuning parameters:
mtry
, numeric)
coefReg
, numeric)
coefImp
, numeric)
Regularized Random Forest (method = 'RRFglobal'
)
For classification and regression using package RRF with tuning parameters:
mtry
, numeric)
coefReg
, numeric)
Relaxed Lasso (method = 'relaxo'
)
For regression using packages relaxo and plyr with tuning parameters:
lambda
, numeric)
phi
, numeric)
Relevance Vector Machines with Linear Kernel (method = 'rvmLinear'
)
For regression using package kernlab with no tuning parameters
Relevance Vector Machines with Polynomial Kernel (method = 'rvmPoly'
)
For regression using package kernlab with tuning parameters:
scale
, numeric)
degree
, numeric)
Relevance Vector Machines with Radial Basis Function Kernel (method = 'rvmRadial'
)
For regression using package kernlab with tuning parameters:
sigma
, numeric)
Ridge Regression (method = 'ridge'
)
For regression using package elasticnet with tuning parameters:
lambda
, numeric)
Ridge Regression with Variable Selection (method = 'foba'
)
For regression using package foba with tuning parameters:
k
, numeric)
lambda
, numeric)
Robust Linear Discriminant Analysis (method = 'Linda'
)
For classification using package rrcov with no tuning parameters
Robust Linear Model (method = 'rlm'
)
For regression using package MASS with tuning parameters:
intercept
, logical)
psi
, character)
Robust Mixture Discriminant Analysis (method = 'rmda'
)
For classification using package robustDA with tuning parameters:
K
, numeric)
model
, character)
Robust Quadratic Discriminant Analysis (method = 'QdaCov'
)
For classification using package rrcov with no tuning parameters
Robust Regularized Linear Discriminant Analysis (method = 'rrlda'
)
For classification using package rrlda with tuning parameters:
lambda
, numeric)
hp
, numeric)
penalty
, character)
Robust SIMCA (method = 'RSimca'
)
For classification using package rrcovHD with no tuning parameters
ROC-Based Classifier (method = 'rocc'
)
For classification using package rocc with tuning parameters:
xgenes
, numeric)
Rotation Forest (method = 'rotationForest'
)
For classification using package rotationForest with tuning parameters:
K
, numeric)
L
, numeric)
Rotation Forest (method = 'rotationForestCp'
)
For classification using packages rpart, plyr and rotationForest with tuning parameters:
K
, numeric)
L
, numeric)
cp
, numeric)
Rule-Based Classifier (method = 'JRip'
)
For classification using package RWeka with tuning parameters:
NumOpt
, numeric)
Rule-Based Classifier (method = 'PART'
)
For classification using package RWeka with tuning parameters:
threshold
, numeric)
pruned
, character)
Self-Organizing Map (method = 'bdk'
)
For classification and regression using package kohonen with tuning parameters:
xdim
, numeric)
ydim
, numeric)
xweight
, numeric)
topo
, character)
Self-Organizing Maps (method = 'xyf'
)
For classification and regression using package kohonen with tuning parameters:
xdim
, numeric)
ydim
, numeric)
xweight
, numeric)
topo
, character)
Semi-Naive Structure Learner Wrapper (method = 'nbSearch'
)
For classification using package bnclassify with tuning parameters:
k
, numeric)
epsilon
, numeric)
smooth
, numeric)
final_smooth
, numeric)
direction
, character)
Shrinkage Discriminant Analysis (method = 'sda'
)
For classification using package sda with tuning parameters:
diagonal
, logical)
lambda
, numeric)
SIMCA (method = 'CSimca'
)
For classification using package rrcovHD with no tuning parameters
Simplified TSK Fuzzy Rules (method = 'FS.HGD'
)
For regression using package frbs with tuning parameters:
num.labels
, numeric)
max.iter
, numeric)
Single C5.0 Ruleset (method = 'C5.0Rules'
)
For classification using package C50 with no tuning parameters
Single C5.0 Tree (method = 'C5.0Tree'
)
For classification using package C50 with no tuning parameters
Single Rule Classification (method = 'OneR'
)
For classification using package RWeka with no tuning parameters
Sparse Distance Weighted Discrimination (method = 'sdwd'
)
For classification using package sdwd with tuning parameters:
lambda
, numeric)
lambda2
, numeric)
Sparse Linear Discriminant Analysis (method = 'sparseLDA'
)
For classification using package sparseLDA with tuning parameters:
NumVars
, numeric)
lambda
, numeric)
Sparse Mixture Discriminant Analysis (method = 'smda'
)
For classification using package sparseLDA with tuning parameters:
NumVars
, numeric)
lambda
, numeric)
R
, numeric)
Sparse Partial Least Squares (method = 'spls'
)
For classification and regression using package spls with tuning parameters:
K
, numeric)
eta
, numeric)
kappa
, numeric)
Spike and Slab Regression (method = 'spikeslab'
)
For regression using packages spikeslab and plyr with tuning parameters:
vars
, numeric)
Stabilized Linear Discriminant Analysis (method = 'slda'
)
For classification using package ipred with no tuning parameters
Stabilized Nearest Neighbor Classifier (method = 'snn'
)
For classification using package snn with tuning parameters:
lambda
, numeric)
Stacked AutoEncoder Deep Neural Network (method = 'dnn'
)
For classification and regression using package deepnet with tuning parameters:
layer1
, numeric)
layer2
, numeric)
layer3
, numeric)
hidden_dropout
, numeric)
visible_dropout
, numeric)
Stepwise Diagonal Linear Discriminant Analysis (method = 'sddaLDA'
)
For classification using package SDDA with no tuning parameters
Stepwise Diagonal Quadratic Discriminant Analysis (method = 'sddaQDA'
)
For classification using package SDDA with no tuning parameters
Stochastic Gradient Boosting (method = 'gbm'
)
For classification and regression using packages gbm and plyr with tuning parameters:
n.trees
, numeric)
interaction.depth
, numeric)
shrinkage
, numeric)
n.minobsinnode
, numeric)
Subtractive Clustering and Fuzzy c-Means Rules (method = 'SBC'
)
For regression using package frbs with tuning parameters:
r.a
, numeric)
eps.high
, numeric)
eps.low
, numeric)
Supervised Principal Component Analysis (method = 'superpc'
)
For regression using package superpc with tuning parameters:
threshold
, numeric)
n.components
, numeric)
Support Vector Machines with Boundrange String Kernel (method = 'svmBoundrangeString'
)
For classification and regression using package kernlab with tuning parameters:
length
, numeric)
C
, numeric)
Support Vector Machines with Class Weights (method = 'svmRadialWeights'
)
For classification using package kernlab with tuning parameters:
sigma
, numeric)
C
, numeric)
Weight
, numeric)
Support Vector Machines with Exponential String Kernel (method = 'svmExpoString'
)
For classification and regression using package kernlab with tuning parameters:
lambda
, numeric)
C
, numeric)
Support Vector Machines wit
train
'' (http://caret.r-forge.r-project.org/custom_models.html)