# NOT RUN {
# }
# NOT RUN {
data(BloodBrain)
x <- scale(bbbDescr[,-nearZeroVar(bbbDescr)])
x <- x[, -findCorrelation(cor(x), .8)]
x <- as.data.frame(x)
set.seed(1)
lmProfile <- rfe(x, logBBB,
sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
rfeControl = rfeControl(functions = lmFuncs,
number = 200))
set.seed(1)
lmProfile2 <- rfe(x, logBBB,
sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
rfeControl = rfeControl(functions = lmFuncs,
rerank = TRUE,
number = 200))
xyplot(lmProfile$results$RMSE + lmProfile2$results$RMSE ~
lmProfile$results$Variables,
type = c("g", "p", "l"),
auto.key = TRUE)
rfProfile <- rfe(x, logBBB,
sizes = c(2, 5, 10, 20),
rfeControl = rfeControl(functions = rfFuncs))
bagProfile <- rfe(x, logBBB,
sizes = c(2, 5, 10, 20),
rfeControl = rfeControl(functions = treebagFuncs))
set.seed(1)
svmProfile <- rfe(x, logBBB,
sizes = c(2, 5, 10, 20),
rfeControl = rfeControl(functions = caretFuncs,
number = 200),
## pass options to train()
method = "svmRadial")
## classification
data(mdrr)
mdrrDescr <- mdrrDescr[,-nearZeroVar(mdrrDescr)]
mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .8)]
set.seed(1)
inTrain <- createDataPartition(mdrrClass, p = .75, list = FALSE)[,1]
train <- mdrrDescr[ inTrain, ]
test <- mdrrDescr[-inTrain, ]
trainClass <- mdrrClass[ inTrain]
testClass <- mdrrClass[-inTrain]
set.seed(2)
ldaProfile <- rfe(train, trainClass,
sizes = c(1:10, 15, 30),
rfeControl = rfeControl(functions = ldaFuncs, method = "cv"))
plot(ldaProfile, type = c("o", "g"))
postResample(predict(ldaProfile, test), testClass)
# }
# NOT RUN {
#######################################
## Parallel Processing Example via multicore
# }
# NOT RUN {
library(doMC)
## Note: if the underlying model also uses foreach, the
## number of cores specified above will double (along with
## the memory requirements)
registerDoMC(cores = 2)
set.seed(1)
lmProfile <- rfe(x, logBBB,
sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
rfeControl = rfeControl(functions = lmFuncs,
number = 200))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab