# NOT RUN {
# }
# NOT RUN {
data(BloodBrain)
## Use a GAM is the filter, then fit a random forest model
set.seed(1)
RFwithGAM <- sbf(bbbDescr, logBBB,
sbfControl = sbfControl(functions = rfSBF,
verbose = FALSE,
seeds = sample.int(100000, 11),
method = "cv"))
RFwithGAM
## A simple example for multivariate scoring
rfSBF2 <- rfSBF
rfSBF2$score <- function(x, y) apply(x, 2, rfSBF$score, y = y)
set.seed(1)
RFwithGAM2 <- sbf(bbbDescr, logBBB,
sbfControl = sbfControl(functions = rfSBF2,
verbose = FALSE,
seeds = sample.int(100000, 11),
method = "cv",
multivariate = TRUE))
RFwithGAM2
# }
Run the code above in your browser using DataLab