Learn R Programming

caretEnsemble (version 4.0.1)

Ensembles of Caret Models

Description

Functions for creating ensembles of caret models: caretList() and caretStack(). caretList() is a convenience function for fitting multiple caret::train() models to the same dataset. caretStack() will make linear or non-linear combinations of these models, using a caret::train() model as a meta-model.

Copy Link

Version

Install

install.packages('caretEnsemble')

Monthly Downloads

2,864

Version

4.0.1

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

September 12th, 2024

Functions in caretEnsemble (4.0.1)

c.caretList

S3 definition for concatenating caretList
extractCaretTarget

Extracts the target variable from a set of arguments headed to the caret::train function.
X.reg

data for classification
extractMetric.train

caretStack

Combine several predictive models via stacking
defaultMetric

Construct a default metric
dotplot.caretStack

Comparison dotplot for a caretStack object
caretPredict

caretList

Create a list of several train models from the caret package
extractCaretTarget.default

Extracts the target variable from a set of arguments headed to the caret::train.default function.
extractModelName

Extract the method name associated with a single train object
c.train

S3 definition for concatenating train objects
isClassifier

Is Classifier
plot.caretList

Plot a caretList object
plot.caretStack

Plot a caretStack object
as.caretList.default

Convert object to caretList object - For Future Use
caretEnsemble

Combine several predictive models via weights
extractMetric

Generic function to extract accuracy metrics from various model objects
extractCaretTarget.formula

Extracts the target variable from a set of arguments headed to the caret::train.formula function.
check_caretStack

Check caretStack object
isClassifierAndValidate

Validate a model type
print.summary.caretStack

Print a summary.caretStack object
set_excluded_class_id

Set excluded class id
models.reg

caretList of regression models
extractMetric.caretList

Extract accuracy metrics from a caretList object
defaultControl

Construct a default train control for use with caretList
extractMetric.caretStack

Extract accuracy metrics from a caretStack object
caretModelSpec

Generate a specification for fitting a caret model
greedyMSE

Greedy optimization for MSE
greedyMSE_caret

caret interface for greedyMSE
models.class

caretList of classification models
permutationImportance

Permutation Importance
validateExcludedClass

Validate the excluded class
normalize_to_one

Normalize to One
mae

Compute MAE
print.greedyMSE

Print method for greedyMSE
methodCheck

Check that the methods supplied by the user are valid caret methods
varImp.caretStack

Variable importance for caretStack
print.summary.caretList

Print a summary.caretList object
shuffled_mae

Shuffled MAE
stackedTrainResiduals

Extracted stacked residuals for the autoplot
caretTrain

Wrapper to train caret models
checkCustomModel

Validate a custom caret model info list
predict.caretList

Create a matrix of predictions for each of the models in a caretList
predict.caretStack

Make predictions from a caretStack
[.caretList

Index a caretList
dropExcludedClass

Drop Excluded Class
extractBestPreds

Extract the best predictions from a train object
predict.greedyMSE

Predict method for greedyMSE
summary.caretList

Summarize a caretList
print.caretStack

Print a caretStack object
summary.caretStack

Summarize a caretStack object
tuneCheck

Check that the tuning parameters list supplied by the user is valid
varImp.greedyMSE

variable importance for a greedyMSE model
wtd.sd

Calculate a weighted standard deviation
aggregate_mean_or_first

Aggregate mean or first
autoplot.caretStack

Convenience function for more in-depth diagnostic plots of caretStack objects
as.caretList

Convert object to caretList object
as.caretList.list

Convert list to caretList
X.class

data for classification
Y.reg

data for regression
Y.class

data for classification