library(sf)
mtq <- st_read(system.file("gpkg/mtq.gpkg", package="cartography"))
var <- mtq$MED
# Histogram
hist(var, probability = TRUE, breaks = 20)
rug(var)
moy <- mean(var)
med <- median(var)
abline(v = moy, col = "red", lwd = 3)
abline(v = med, col = "blue", lwd = 3)
# Quantile intervals
breaks <- getBreaks(v = var, nclass = 6, method = "quantile")
hist(var, probability = TRUE, breaks = breaks, col = "#F0D9F9")
rug(var)
med <- median(var)
abline(v = med, col = "blue", lwd = 3)
# Pretty breaks
breaks <- getBreaks(v = var, nclass = 4, method = "pretty")
hist(var, probability = TRUE, breaks = breaks, col = "#F0D9F9", axes = FALSE)
rug(var)
axis(1, at = breaks)
axis(2)
abline(v = med, col = "blue", lwd = 6)
# kmeans method
breaks <- getBreaks(v = var, nclass = 4, method = "kmeans")
hist(var, probability = TRUE, breaks = breaks, col = "#F0D9F9")
rug(var)
abline(v = med, col = "blue", lwd = 6)
# Geometric intervals
breaks <- getBreaks(v = var, nclass = 8, method = "geom")
hist(var, probability = TRUE, breaks = breaks, col = "#F0D9F9")
rug(var)
# Mean and standard deviation (msd)
breaks <- getBreaks(v = var, method = "msd", k = 1, middle = TRUE)
hist(var, probability = TRUE, breaks = breaks, col = "#F0D9F9")
rug(var)
moy <- mean(var)
sd <- sd(var)
abline(v = moy, col = "red", lwd = 3)
abline(v = moy + 0.5 * sd, col = "blue", lwd = 3)
abline(v = moy - 0.5 * sd, col = "blue", lwd = 3)
Run the code above in your browser using DataLab