Generate binary data (ROC model)
draw_data_roc(
n = 100,
prev = c(0.5, 0.5),
random = FALSE,
m = 10,
auc = seq(0.85, 0.95, length.out = 5),
rho = c(0.25, 0.25),
dist = c("normal", "exponential"),
e = 10,
k = 100,
delta = 0,
modnames = paste0("model", 1:m),
corrplot = FALSE,
...
)
Generated binary dataset
integer, total sample size
numeric, disease and healthy prevalence (adds up to 1)
logical, random sampling (TRUE) or fixed prevalence (FALSE)
integer, number of models
numeric, vector of AUCs of biomarkers
numeric, vector (length 2) of correlations between biomarkers
character, either "normal" or "exponential" specifying the subgroup biomarker distributions
numeric, emulates better (worse) model selection quality with higher (lower) values of e
integer, technical parameter which adjusts grid size
numeric, specify importance of sensitivity and specificity (default 0)
character, model names (length m)
logical (default: FALSE), if TRUE do not return data but instead plot correlation matrices for final binary data
further arguments (currently unused)
data <- draw_data_roc()
head(data)
Run the code above in your browser using DataLab