Assess classification accuracy of multiple classifcation rules stratified by subgroups, e.g. in diseased (sensitivity) and healthy (specificity) individuals.
evaluate(
data,
contrast = define_contrast("raw"),
benchmark = 0.75,
alpha = 0.05,
alternative = c("two.sided", "greater", "less"),
adjustment = c("none", "bonferroni", "maxt", "bootstrap", "mbeta"),
transformation = c("none", "logit"),
analysis = c("co-primary", "full"),
regu = FALSE,
pars = list(),
...
)
cases_results object, which is a list of analysis results
list of n_g x m binary matrix or data.frame (n_g observations of m binary decisions),
g is the index of subgroups/classes, usually created via compare
.
cases_contrast
object, specified via define_contrast
value to compare against (RHS), should have same length as data.
numeric, significance level (default: 0.05)
character, specify alternative hypothesis
character, specify type of statistical adjustment taken to address multiplicity
character, define transformation to ensure results (e.g. point estimates, confidence limits) lie in unit interval ("none" (default) or "logit")
character, "co-primary" or "full"
numeric vector of length 3, specify type of shrinkage. Alternatively, logical of length one (TRUE := c(2, 1, 1/2), FALSE := c(0, 0, 0))
further parameters given as named list list(type="pairs", nboot=10000)
additional named parameters, can be used instead of (in in conjunction with) pars
Adjustment methods (adjustment
) and additional parameters (pars
or ...
):
"none" (default): no adjustment for multiplicity
"bonferroni": Bonferroni adjustment
"maxt": maxT adjustment
"bootstrap": Bootstrap approach
type: "pairs" (default) or "wild" = type (for adjustment="bootstrap)
nboot: number of bootstrap draws (default: 5000)
res_tra: = 0,1,2 or 3 = type of residual transformation of wild boostrap (default = 0: no transformation) (see https://www.math.kth.se/matstat/gru/sf2930/papers/wild.bootstrap.pdf)
"mbeta": A heuristic Bayesian approach which is based on a multivariate beta-binomial model.
nrep: number of posterior draws (default: 5000)
lfc_pr: prior probability of 'least-favorable parameter configuration' (default: 1).
#
data <- draw_data_roc()
evaluate(data)
Run the code above in your browser using DataLab