Learn R Programming

cases (version 0.2.0)

generate_instance_roc: Generate data sets under realistic parameter configurations

Description

Generates a (simulation) instance, a list of multiple datasets to be processed (analyzed) with process_instance. Ground truth parameters (Sensitvity & Specificity) are initially generated according to a generative model whereby multiple decision rules (with different parameter values) are derived by thresholding multiple biomarkers.

This function is only needed for simulation via batchtools, not relevant in interactive use!

Usage

generate_instance_roc(
  nrep = 10,
  n = 100,
  prev = 0.5,
  random = FALSE,
  m = 10,
  auc = "seq(0.85, 0.95, length.out = 5)",
  rhose = 0.5,
  rhosp = 0.5,
  dist = "normal",
  e = 10,
  k = 100,
  delta = 0,
  ...,
  data = NULL,
  job = NULL
)

Value

(list)
a single (ROC) simulation instance of length nrep

Arguments

nrep

(numeric)
integer, number of instances

n

(numeric)
integer, total sample size

prev

(numeric)
disease prevalence

random

(logical)
fixed prevalence (FALSE) or simple random sampling (TRUE)

m

(numeric)
integer, number of candidates

auc

(numeric)
vector of AUCs of biomarkers

rhose

(numeric)
correlation parameter for sensitivity

rhosp

(numeric)
correlation parameter for specificity

dist

(character)
either "normal" or "exponential" specifying the subgroup biomarker distributions

e

(numeric)
emulates better (worse) model selection quality with higher (lower) values of e

k

(numeric)
technical parameter which adjusts grid size

delta

(numeric)
specify importance between sensitivity and specificity (default 0: equal importance)

...

(any)
further arguments

data

(NULL)
ignored (for batchtools compatibility)

job

(NULL)
ignored (for batchtools compatibility)

Details

Utilizes same arguments as draw_data_roc unless mentioned otherwise above.