Learn R Programming

cclust (version 0.6-26)

predict.cclust: Assign clusters to new data

Description

Assigns each data point (row in newdata) the cluster corresponding to the closest center found in object.

Usage

# S3 method for cclust
predict(object, newdata, ...)

Value

predict.cclust returns an object of class "cclust". Only size is changed as compared to the argument

object.

cluster

Vector containing the indices of the clusters where the data is mapped.

size

The number of data points in each cluster.

Arguments

object

Object of class "cclust" returned by a clustering algorithm such as cclust

newdata

Data matrix where columns correspond to variables and rows to observations

...

currently not used

Author

Evgenia Dimitriadou

See Also

cclust

Examples

Run this code
# a 2-dimensional example
x<-rbind(matrix(rnorm(100,sd=0.3),ncol=2),
         matrix(rnorm(100,mean=1,sd=0.3),ncol=2))
cl<-cclust(x,2,20,verbose=TRUE,method="kmeans")
plot(x, col=cl$cluster)   

# a 3-dimensional example
x<-rbind(matrix(rnorm(150,sd=0.3),ncol=3),
         matrix(rnorm(150,mean=1,sd=0.3),ncol=3),
         matrix(rnorm(150,mean=2,sd=0.3),ncol=3))
cl<-cclust(x,6,20,verbose=TRUE,method="kmeans")
plot(x, col=cl$cluster)

# assign classes to some new data
y<-rbind(matrix(rnorm(33,sd=0.3),ncol=3),
         matrix(rnorm(33,mean=1,sd=0.3),ncol=3),
         matrix(rnorm(3,mean=2,sd=0.3),ncol=3))
ycl<-predict(cl, y)
plot(y, col=ycl$cluster)

Run the code above in your browser using DataLab