Learn R Programming

cdfquantreg (version 1.3.1-2)

summary.cdfqr: S3 Methods for getting output from fitted cdfqr Objects.

Description

Give the S3 Methods for CDF-Quantile Distribution Models

Usage

# S3 method for cdfqr
summary(object, ...)

# S3 method for cdfqr print(x, digits = max(3, getOption("digits") - 3), ...)

# S3 method for cdfqr coef(object, type = "full", ...)

# S3 method for cdfqr vcov(object, type = "full", ...)

# S3 method for cdfqr update(object, formula., zero.fo., one.fo., mu.fo., ..., evaluate = TRUE)

# S3 method for cdfqr confint(object, parm, level = 0.95, submodel = "full", ...)

# S3 method for cdfqr formula(x, ...)

# S3 method for cdfqr nobs(object, ...)

# S3 method for cdfqr deviance(object, ...)

# S3 method for cdfqrH logLik(object, ...)

# S3 method for cdfqrH confint( object, parm, level = 0.95, type = c("full", "mean", "sigma", "zero", "one"), ... )

# S3 method for cdfqrFT confint(object, parm, level = 0.95, submodel = "full", ...)

Arguments

...

Pass onto other functions or currently ignored

x, object

The fitted cdfqr model.

digits

Number of digits to be retained in printed output.

type, submodel

The parts of coefficients or variance-covariance matrix to be extracted.Can be "full", "mean",or "sigma".

formula.

Changes to the formula. See update.Formula for details.

zero.fo., one.fo., mu.fo.,

Changes to the formulas for zero/one component for hurdle models, and for location submodel for finite-tailed models.

evaluate

If true evaluate the new updated model else return the call for the new model.

parm

a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

level

the confidence level required.

Examples

Run this code
data(cdfqrExampleData)
fit <- cdfquantreg(crc99 ~ vert | confl, 't2','t2', data = JurorData)

summary(fit)
print(fit)
logLik(fit)
coef(fit)
deviance(fit)
vcov(fit)
confint(fit)

#Update the model
fit2 <- update(fit, crc99 ~ vert*confl | confl)
summary(fit2)

Run the code above in your browser using DataLab