The outlier map is a diagnostic plot for the output of MacroPCA
.
outlierMap(res,title="Robust PCA",col="black", pch=16,labelOut=TRUE,id=3,
xlim = NULL, ylim = NULL, cex = 1, cex.main=1.2, cex.lab=NULL, cex.axis=NULL)
A list containing the orthogonal distances (OD
), the score distances (SD
) and their respective cut-offs (cutoffOD
and cutoffSD
). Can be the output of MacroPCA
,
rospca::robpca, rospca::rospca.
Title of the plot, default is "Robust PCA".
Colour of the points in the plot, this can be a single colour for all points or a vector or list specifying the colour for each point. The default is "black".
Plotting characters or symbol used in the plot, see points for more details. The default is 16 which corresponds to filled circles.
Logical indicating if outliers should be labelled on the plot, default is TRUE
.
Number of OD outliers and number of SD outliers to label on the plot, default is 3.
Optional argument to set the limits of the x
-axis.
Optional argument to set the limits of the y
-axis.
Optional argument determining the size of the plotted points. See plot.default
for details.
Optional argument determining the size of the main title. See plot.default
for details.
Optional argument determining the size of the labels. See plot.default
for details.
Optional argument determining the size of the axes. See plot.default
for details.
P.J. Rousseeuw
The outlier map contains the score distances on the x-axis and the orthogonal distances on the y-axis. To detect outliers, cut-offs for both distances are shown, see Hubert et al. (2005).
Hubert, M., Rousseeuw, P. J., and Vanden Branden, K. (2005). ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics, 47, 64-79.
MacroPCA