# NOT RUN {
df <- getCensus(name = "acs/acs5", vintage = 2016,
vars = c("B01001_001E", "NAME", "B01002_001E", "B19013_001E"),
region = "tract:*", regionin = "state:06")
head(df)
# Use American Community Survey variable groups to get all data from a given table.
# This returns estimates as well as margins of error and annotation flags.
acs_group <- getCensus(name = "acs/acs5", vintage = 2016,
vars = c("NAME", "group(B19013)"),
region = "county:*")
head(acs_group)
# Retreive block-level data within a specific state and county using a nested regionin argument
data2010 <- getCensus(name = "dec/sf1", vintage = 2010,
vars = c("P001001", "H010001"),
region = "block:*", regionin = "state:36+county:027")
head(data2010)
# Retreive block-level data for Decennial Census sf1, 2000
# Note, for this dataset a tract needs to be specified to retrieve blocks
data2000 <- getCensus(name = "sf1", vintage = 2000,
vars = c("P001001", "P003001"),
region = "block:*", regionin = "state:36+county:27+tract:010000")
head(data2000)
# Get time series data
saipe <- getCensus(name = "timeseries/poverty/saipe",
vars = c("NAME", "SAEPOVRT0_17_PT", "SAEPOVRTALL_PT"),
region = "state:*", time = 2011)
head(saipe)
# Get county business patterns data for a specific NAICS sector
cbp_2016 <- getCensus(name = "cbp",
vintage = "2016",
vars = c("EMP", "ESTAB", "NAICS2012_TTL", "GEO_TTL"),
region = "state:*",
naics2012 = "23")
head(cbp_2016)
# }
Run the code above in your browser using DataLab