Learn R Programming

cghFLasso (version 0.2-1)

output.cghFLasso: Output gain/loss calls by cghFLasso

Description

Output gain/loss calls by cghFLasso.

Usage

output.cghFLasso(summary.obj, file, gene.info=NULL)

Arguments

summary.obj
an object of class summary.cghFLasso, usually, a result of a call to summary.cghFLasso.
file
a character specifying the file name to output the data.
gene.info
matrix. Additional gene/clone annotation to output.

Value

No return value.

Details

Output gain/loss calls by cghFLasso.

References

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight (2004) `Sparsity and smoothness via the fused lasso', J. Royal. Statist. Soc. B. (In press), available at http://www-stat.stanford.edu/~tibs/research.html.

P. Wang, Y. Kim, J. Pollack, B. Narasimhan and R. Tibshirani (2005) `A method for calling gains and losses in array CGH data', Biostatistics 2005, 6: 45-58, available at http://www-stat.stanford.edu/~wp57/CGH-Miner/

R. Tibshirani and P. Wang (2007) `Spatial smoothing and hot spot detection using the Fused Lasso', Biostatistics (In press), available at http://www-stat.stanford.edu/~tibs/research.html.

J. Friedman, T. Hastie. R. Tibshirani (2007) `Pathwise coordinate optimization and the fused lasso'.

Examples

Run this code

library(cghFLasso)
data(CGH)

#############
### Example 1: Process one chromosome vector without using normal references.

CGH.FL.obj1<-cghFLasso(CGH$GBM.y)
plot(CGH.FL.obj1, index=1, type="Lines")

#############
### Example 2: Process a group of CGH arrays and use normal reference arrays.

Normal.FL<-cghFLasso.ref(CGH$NormalArray,  chromosome=CGH$chromosome)
Disease.FL<-cghFLasso(CGH$DiseaseArray, chromosome=CGH$chromosome, nucleotide.position=CGH$nucposition, FL.norm=Normal.FL, FDR=0.01)

###  Plot for the first arrays
i<-1
plot(Disease.FL, index=i, type="Single")
title(main=paste("Plot for the ", i ,"th BAC array", sep=""))

### Consensus plot
plot(Disease.FL, index=1:4, type="Consensus")
title(main="Consensus Plot for 4 BAC arrays")

### Plot all arrays
plot(Disease.FL, index=1:4, type="All")
title(main="Plot for all 4 arrays")

### Report and output
report<-summary(Disease.FL, index=1:4)
print(report)
output.cghFLasso(report, file="CGH.FL.output.txt")

Run the code above in your browser using DataLab