set.seed(123)
n <- 100
p <- 3
q <- 2
b0 <- rep(1, p)
X <- matrix(rnorm(n * q), n, q)
B <- matrix(rnorm(q * p), q, p)
Sigma <- outer(1:p, 1:p, function(i, j) 0.3^abs(i - j))
probl <- 0.05
probr <- 0.05
probna <- 0.05
# Model 1: Y ~ N(0, I)
Z <- rcggm(n = n, p = p, probl = probl, probr = probr, probna = probna)
summary(Z)
# Model 2: Y ~ N(0, Sigma)
Z <- rcggm(n = n, Sigma = Sigma, probl = probl, probr = probr, probna = probna)
summary(Z)
# Model 3: Y ~ N(b0, I)
Z <- rcggm(n = n, b0 = b0, probl = probl, probr = probr, probna = probna)
summary(Z)
# Model 4: Y ~ N(b0, Sigma)
Z <- rcggm(n = n, b0 = b0, Sigma = Sigma, probl = probl, probr = probr,
probna = probna)
summary(Z)
# Model 5: Y ~ N(XB, I)
Z <- rcggm(X = X, B = B, probl = probl, probr = probr, probna = probna)
summary(Z)
# Model 6: Y ~ N(XB, Sigma)
Z <- rcggm(X = X, B = B, Sigma = Sigma, probl = probl, probr = probr,
probna = probna)
summary(Z)
# Model 7: Y ~ N(b0 + XB, I)
Z <- rcggm(b0 = b0, X = X, B = B, probl = probl, probr = probr, probna = probna)
summary(Z)
# Model 8: Y ~ N(b0 + XB, Sigma)
Z <- rcggm(b0 = b0, X = X, B = B, Sigma = Sigma, probl = probl, probr = probr,
probna = probna)
summary(Z)
Run the code above in your browser using DataLab