Learn R Programming

checkmate (version 2.3.2)

checkComplex: Check if an argument is a vector of type complex

Description

Check if an argument is a vector of type complex

Usage

checkComplex(
  x,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  names = NULL,
  typed.missing = FALSE,
  null.ok = FALSE
)

check_complex( x, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE )

assertComplex( x, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE, .var.name = vname(x), add = NULL )

assert_complex( x, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE, .var.name = vname(x), add = NULL )

testComplex( x, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE )

test_complex( x, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE )

expect_complex( x, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, typed.missing = FALSE, null.ok = FALSE, info = NULL, label = vname(x) )

Value

Depending on the function prefix: If the check is successful, the functions

assertComplex/assert_complex return

x invisibly, whereas

checkComplex/check_complex and

testComplex/test_complex return

TRUE. If the check is not successful,

assertComplex/assert_complex

throws an error message,

testComplex/test_complex

returns FALSE, and checkComplex/check_complex

return a string with the error message. The function expect_complex always returns an

expectation.

Arguments

x

[any]
Object to check.

any.missing

[logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing

[logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that empty vectors do not have non-missing values.

len

[integer(1)]
Exact expected length of x.

min.len

[integer(1)]
Minimal length of x.

max.len

[integer(1)]
Maximal length of x.

unique

[logical(1)]
Must all values be unique? Default is FALSE.

names

[character(1)]
Check for names. See checkNamed for possible values. Default is “any” which performs no check at all. Note that you can use checkSubset to check for a specific set of names.

typed.missing

[logical(1)]
If set to FALSE (default), all types of missing values (NA, NA_integer_, NA_real_, NA_character_ or NA_character_) as well as empty vectors are allowed while type-checking atomic input. Set to TRUE to enable strict type checking.

null.ok

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is performed, all additional checks are disabled.

.var.name

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

add

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

info

[character(1)]
Extra information to be included in the message for the testthat reporter. See expect_that.

label

[character(1)]
Name of the checked object to print in messages. Defaults to the heuristic implemented in vname.

Details

This function does not distinguish between NA, NA_integer_, NA_real_, NA_complex_ NA_character_ and NaN.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(), checkFormula(), checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(), checkNull(), checkNumeric(), checkPOSIXct(), checkRaw(), checkVector()

Examples

Run this code
testComplex(1)
testComplex(1+1i)

Run the code above in your browser using DataLab