Check if an argument is a single atomic value
checkScalar(x, na.ok = FALSE, null.ok = FALSE)check_scalar(x, na.ok = FALSE, null.ok = FALSE)
assertScalar(
x,
na.ok = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL
)
assert_scalar(
x,
na.ok = FALSE,
null.ok = FALSE,
.var.name = vname(x),
add = NULL
)
testScalar(x, na.ok = FALSE, null.ok = FALSE)
test_scalar(x, na.ok = FALSE, null.ok = FALSE)
expect_scalar(x, na.ok = FALSE, null.ok = FALSE, info = NULL, label = vname(x))
Depending on the function prefix: If the check is successful, the functions
assertScalar
/assert_scalar
return
x
invisibly, whereas
checkScalar
/check_scalar
and
testScalar
/test_scalar
return
TRUE
.
If the check is not successful,
assertScalar
/assert_scalar
throws an error message,
testScalar
/test_scalar
returns FALSE
,
and checkScalar
/check_scalar
return a string with the error message.
The function expect_scalar
always returns an
[any]
Object to check.
[logical(1)
]
Are missing values allowed? Default is FALSE
.
[logical(1)
]
If set to TRUE
, x
may also be NULL
.
In this case only a type check of x
is performed, all additional checks are disabled.
[character(1)
]
Name of the checked object to print in assertions. Defaults to
the heuristic implemented in vname
.
[AssertCollection
]
Collection to store assertion messages. See AssertCollection
.
[character(1)
]
Extra information to be included in the message for the testthat reporter.
See expect_that
.
[character(1)
]
Name of the checked object to print in messages. Defaults to
the heuristic implemented in vname
.
This function does not distinguish between
NA
, NA_integer_
, NA_real_
, NA_complex_
NA_character_
and NaN
.
Other scalars:
checkCount()
,
checkFlag()
,
checkInt()
,
checkNumber()
,
checkScalarNA()
,
checkString()
testScalar(1)
testScalar(1:10)
Run the code above in your browser using DataLab