Learn R Programming

checkmate (version 2.3.2)

checkVector: Check if an argument is a vector

Description

Check if an argument is a vector

Usage

checkVector(
  x,
  strict = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  names = NULL,
  null.ok = FALSE
)

check_vector( x, strict = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, null.ok = FALSE )

assertVector( x, strict = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, null.ok = FALSE, .var.name = vname(x), add = NULL )

assert_vector( x, strict = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, null.ok = FALSE, .var.name = vname(x), add = NULL )

testVector( x, strict = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, null.ok = FALSE )

test_vector( x, strict = FALSE, any.missing = TRUE, all.missing = TRUE, len = NULL, min.len = NULL, max.len = NULL, unique = FALSE, names = NULL, null.ok = FALSE )

Value

Depending on the function prefix: If the check is successful, the functions

assertVector/assert_vector return

x invisibly, whereas

checkVector/check_vector and

testVector/test_vector return

TRUE. If the check is not successful,

assertVector/assert_vector

throws an error message,

testVector/test_vector

returns FALSE, and checkVector/check_vector

return a string with the error message. The function expect_vector always returns an

expectation.

Arguments

x

[any]
Object to check.

strict

[logical(1)]
May the vector have additional attributes? If TRUE, mimics the behavior of is.vector. Default is FALSE which allows e.g. factors or data.frames to be recognized as vectors.

any.missing

[logical(1)]
Are vectors with missing values allowed? Default is TRUE.

all.missing

[logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE. Note that empty vectors do not have non-missing values.

len

[integer(1)]
Exact expected length of x.

min.len

[integer(1)]
Minimal length of x.

max.len

[integer(1)]
Maximal length of x.

unique

[logical(1)]
Must all values be unique? Default is FALSE.

names

[character(1)]
Check for names. See checkNamed for possible values. Default is “any” which performs no check at all. Note that you can use checkSubset to check for a specific set of names.

null.ok

[logical(1)]
If set to TRUE, x may also be NULL. In this case only a type check of x is performed, all additional checks are disabled.

.var.name

[character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic implemented in vname.

add

[AssertCollection]
Collection to store assertion messages. See AssertCollection.

See Also

Other basetypes: checkArray(), checkAtomic(), checkAtomicVector(), checkCharacter(), checkComplex(), checkDataFrame(), checkDate(), checkDouble(), checkEnvironment(), checkFactor(), checkFormula(), checkFunction(), checkInteger(), checkIntegerish(), checkList(), checkLogical(), checkMatrix(), checkNull(), checkNumeric(), checkPOSIXct(), checkRaw()

Other atomicvector: checkAtomic(), checkAtomicVector()

Examples

Run this code
testVector(letters, min.len = 1L, any.missing = FALSE)

Run the code above in your browser using DataLab