Check if an argument is a vector
checkVector(
  x,
  strict = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  names = NULL,
  null.ok = FALSE
)check_vector(
  x,
  strict = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  names = NULL,
  null.ok = FALSE
)
assertVector(
  x,
  strict = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  names = NULL,
  null.ok = FALSE,
  .var.name = vname(x),
  add = NULL
)
assert_vector(
  x,
  strict = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  names = NULL,
  null.ok = FALSE,
  .var.name = vname(x),
  add = NULL
)
testVector(
  x,
  strict = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  names = NULL,
  null.ok = FALSE
)
test_vector(
  x,
  strict = FALSE,
  any.missing = TRUE,
  all.missing = TRUE,
  len = NULL,
  min.len = NULL,
  max.len = NULL,
  unique = FALSE,
  names = NULL,
  null.ok = FALSE
)
Depending on the function prefix: If the check is successful, the functions
assertVector/assert_vector return
x invisibly, whereas
checkVector/check_vector and
testVector/test_vector return
TRUE.
 If the check is not successful,
assertVector/assert_vector
throws an error message,
testVector/test_vector
returns FALSE,
 and checkVector/check_vector
return a string with the error message.
 The function expect_vector always returns an
[any]
Object to check.
[logical(1)]
May the vector have additional attributes? If TRUE, mimics the behavior of
is.vector.
Default is FALSE which allows e.g. factors or data.frames
to be recognized as vectors.
[logical(1)]
Are vectors with missing values allowed? Default is TRUE.
[logical(1)]
Are vectors with no non-missing values allowed? Default is TRUE.
Note that empty vectors do not have non-missing values.
[integer(1)]
Exact expected length of x.
[integer(1)]
Minimal length of x.
[integer(1)]
Maximal length of x.
[logical(1)]
Must all values be unique? Default is FALSE.
[character(1)]
Check for names. See checkNamed for possible values.
Default is “any” which performs no check at all.
Note that you can use checkSubset to check for a specific set of names.
[logical(1)]
If set to TRUE, x may also be NULL.
In this case only a type check of x is performed, all additional checks are disabled.
[character(1)]
Name of the checked object to print in assertions. Defaults to
the heuristic implemented in vname.
[AssertCollection]
Collection to store assertion messages. See AssertCollection.
Other basetypes: 
checkArray(),
checkAtomic(),
checkAtomicVector(),
checkCharacter(),
checkComplex(),
checkDataFrame(),
checkDate(),
checkDouble(),
checkEnvironment(),
checkFactor(),
checkFormula(),
checkFunction(),
checkInteger(),
checkIntegerish(),
checkList(),
checkLogical(),
checkMatrix(),
checkNull(),
checkNumeric(),
checkPOSIXct(),
checkRaw()
Other atomicvector: 
checkAtomic(),
checkAtomicVector()
testVector(letters, min.len = 1L, any.missing = FALSE)
Run the code above in your browser using DataLab