pcaVarexpl: PCA diagnostics for variables
Description
Diagnostics of PCA to see the explained variance for each variable.
Usage
pcaVarexpl(X, a, center = TRUE, scale = TRUE, plot = TRUE, ...)
Value
- ExplVar
explained variance for each variable
Arguments
- X
numeric data frame or matrix
- a
number of principal components
- center
centring of X (FALSE or TRUE)
- scale
scaling of X (FALSE or TRUE)
- plot
if TRUE make plot with explained variance
- ...
additional graphics parameters, see par
Author
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
Details
For a desired number of principal components the percentage of explained
variance is computed for each variable and plotted.
References
K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical
Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.
Examples
Run this codedata(glass)
res <- pcaVarexpl(glass,a=2)
Run the code above in your browser using DataLab