Last chance! 50% off unlimited learning
Sale ends in
RSPT01
Binary Outcomes Summary.RSPT01
template may be used to summarize any binary outcome or response variable at
a single time point. Typical application for oncology
rspt01_main(
adam_db,
dataset = "adrs",
arm_var = "ARM",
ref_group = NULL,
odds_ratio = TRUE,
perform_analysis = "unstrat",
strata = NULL,
conf_level = 0.95,
methods = list(),
...
)rspt01_pre(adam_db, ...)
rspt01_post(tlg, prune_0 = TRUE, ...)
rspt01
the main function returns an rtables
object.
the preprocessing function returns a list
of data.frame
.
the postprocessing function returns an rtables
object or an ElementaryTable
(null report).
An object of class chevron_t
of length 1.
(list
of data.frames
) object containing the ADaM
datasets
(string
) the name of a table in the adam_db
object.
(string
) variable used for column splitting
(string
) The name of the reference group, the value should
be identical to the values in arm_var
, if not specified, it will by default
use the first level or value of arm_var
.
(flag
) should the odds ratio be calculated, default is TRUE
(string
) option to display statistical comparisons using stratified analyses,
or unstratified analyses, or both, e.g. c("unstrat", "strat")
. Only unstratified will be displayed by default
(string
) stratification factors, e.g. strata = c("STRATA1", "STRATA2")
, by default as NULL
(numeric
) the level of confidence interval, default is 0.95.
(list
) a named list, use a named list to control, for example:
methods = list(prop_conf_method = "wald", diff_conf_method = "wald", strat_diff_conf_method = "ha", diff_pval_method = "fisher", strat_diff_pval_method = "schouten")
prop_conf_method
controls the methods of calculating proportion confidence interval,
diff_conf_method
controls the methods of calculating unstratified difference confidence interval,
strat_diff_conf_method
controls the methods of calculating stratified difference confidence interval,
diff_pval_method
controls the methods of calculating unstratified p-value for odds ratio,
strat_diff_pval_method
controls the methods of calculating stratified p-value for odds ratio,
see more details in tern
not used.
(TableTree
, Listing
or ggplot
) object typically produced by a main
function.
(flag
) remove 0 count rows
rspt01_main()
: Main TLG function
rspt01_pre()
: Preprocessing
rspt01_post()
: Postprocessing
No overall value.
library(dplyr)
library(dunlin)
proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
run(rspt01, proc_data)
run(rspt01, proc_data,
odds_ratio = FALSE, perform_analysis = c("unstrat", "strat"),
strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher")
)
Run the code above in your browser using DataLab