Learn R Programming

chi (version 0.1)

invchi: The Inverse Chi Distribution

Description

Density, distribution function, quantile function and random generation for the inverse chi distribution.

Usage

dinvchi(x, df, ncp = 0, log = FALSE)

pinvchi(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)

qinvchi(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)

rinvchi(n, df, ncp = 0)

Arguments

x, q
vector of quantiles.
df
degrees of freedom (non-negative, but can be non-integer).
ncp
non-centrality parameter (non-negative).
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x] otherwise, P[X > x].
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required.

See Also

dchi

Examples

Run this code

s <- seq(0, 2, .01)
plot(s, dinvchi(s, 7), type = 'l')

f <- function(x) dinvchi(x, 7)
q <- .5
integrate(f, 0, q)
(p <- pinvchi(q, 7))
qinvchi(p, 7) # = q
mean(rinvchi(1e5, 7) <= q)


samples <- rinvchi(1e5, 7)
plot(density(samples))
curve(f, add = TRUE, col = "red")


Run the code above in your browser using DataLab