
MFIaggr is used for a fast multiple comparison of the cycle dependent variance of the fluorescence.
# S4 method for numeric,numeric
MFIaggr(x, y, cyc = 1, fluo = 2:ncol(x),
RSD = FALSE, rob = FALSE, llul = c(1,10))
# S4 method for matrix,missing
MFIaggr(x, y, cyc = 1, fluo = 2:ncol(x),
RSD = FALSE, rob = FALSE, llul = c(1,10))
# S4 method for data.frame,missing
MFIaggr(x, y, cyc = 1, fluo = 2:ncol(x),
RSD = FALSE, rob = FALSE, llul = c(1,10))
is the column of a data frame for the cycle or data.frame/matrix with whole data.
are multiple columns of fluorescence values from a
data.frame
(e.g., [, c(1:n)]).
is the index of column containing the cycle data.
Used only if y
is missing.
are the columns containing the fluorescence data.
Used only if y
is missing.
Setting the option RSD = TRUE
shows the relative
standard deviation (RSD) in percent.
Using the option rob
as TRUE the median and the
median
absolute deviation (MAD) are calculated instead of the mean and standard
deviation.
is a parameter to define the lower and upper data limit (cycle), aka region of interest (ROI) used for the density and quantile plot.
An object of the class '>refMFI
. refMFI means referenced
Mean Fluorescence Intensity (Roediger et al. 2013).
Roediger S, Boehm A, Schimke I. Surface Melting Curve Analysis with R. The R Journal 2013;5:37--53.
# NOT RUN {
# First Example
# Cycle dependent variance of the refMFI using standard measures
# (Mean, Standard Deviation (SD)).
# Use Standard Deviation (SD) in the plot
data(VIMCFX96_60)
MFIaggr(VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)])
#alternative usage
MFIaggr(VIMCFX96_60)
#only second and forth column
plot(MFIaggr(VIMCFX96_60, fluo = c(2, 4)))
# Example
# Use of MFIaggr to test for heteroskedasticity using the Breusch-Pagan
# test. The data were aggregated with the MFIaggr function and assigned to
# the object res. The standard deviation was transformed to the variance.
# The plot shows the cycle dependent variance.
# First cycles 1 to 10 of 96 qPCR replicate amplification curves were
# analyzed. Next the cycles 1 to 40 of the same amplification curve data
# were analyzed. The Breusch-Pagan confirmed the heteroskedasticity in the
# amplification curve data.
default.par <- par(no.readonly = TRUE)
par(mfrow = c(1,2), bty = "n")
res <- MFIaggr(VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],
llul = c(1,10))
head(res)
plot(res[, 1], res[, 3]^2, xlab = "Cycle", ylab = "Variance of refMFI",
xlim = c(1,10), main = "ROI from Cycle 1 to 10", pch = 19, type = "b")
abline(v = c(1,10), col = "grey", lty = 2, lwd = 2)
legend("top", paste0("Breusch-Pagan test p-value: \n", format(summary(res)[5],
digits = 2)), bty = "n")
res <- MFIaggr(VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],
llul = c(1,40))
head(res)
plot(res[, 1], res[, 3]^2, xlab = "Cycle", ylab = "Variance of refMFI",
main = "ROI from Cycle 1 to 40", pch = 19, type = "b")
abline(v = c(1,40), col = "grey", lty = 2, lwd = 2)
legend("top", paste0("Breusch-Pagan test p-value: \n", format(summary(res)[5],
digits = 2)), bty = "n")
par(default.par)
# }
Run the code above in your browser using DataLab