powered by
Computes the maximum likelihood estimates for the parameters of a Wrapped Cauchy distribution: mean and concentration parameter.
mle.wrappedcauchy(x, mu = NULL, rho = NULL, tol = 1e-15, max.iter = 100, control.circular = list()) # S3 method for mle.wrappedcauchy print(x, digits = max(3, getOption("digits") - 3), …)
a vector. The object is coerced to class circular.
circular
if NULL the maximum likelihood estimate of the mean direction is calculated otherwise it is coerced to an object of class circular.
NULL
if NULL the maximum likelihood estimate of the concentration parameter is calculated.
precision of the estimation.
maximum number of iterations.
the attribute of the resulting objects (mu)
mu
integer indicating the precision to be used.
further arguments passed to or from other methods.
Returns a list with the following components:
the match.call result.
match.call
the estimate of the mean direction or the value supplied as an object of class circular.
the estimate of the concentration parameter or the value supplied
TRUE if convergence is achieved.
Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, Section 4.2.1, World Scientific Press, Singapore.
mean.circular
# NOT RUN { x <- rwrappedcauchy(n=50, mu=circular(0), rho=0.5) mle.wrappedcauchy(x) # estimation of mu and rho mle.wrappedcauchy(x, mu=circular(0)) # estimation of rho only # }
Run the code above in your browser using DataLab